
Lec:1 Introduction to Digital Signal Processing

1.1 Basic Concepts of Digital Signal Processing

Digital signal processing (DSP) technology and its advancements have dramatically

impacted our modern society everywhere. Without DSP, we would not have digital/Internet audio or

video; digital recording; CD, DVD, and MP3 players; digital cameras; digital and cellular

telephones; digital satellite and TV; or wire and wireless networks. Medical instruments would be

less efficient or unable to provide useful information for precise diagnoses if there were no digital

electrocardiography (ECG) analyzers or digital x-rays and medical image systems. We would also

live in many less efficient ways, since we would not be equipped with voice recognition systems,

speech synthesis systems, and image and video editing systems. Without DSP, scientists, engineers,

and technologists would have no powerful tools to analyze and visualize data and perform their

design, and so on.

The concept of DSP is illustrated by the simplified block diagram in Fig. (1.1), which

consists of an analog filter, an analog-to-digital conversion (ADC) unit, a digital signal (DS)

processor, a digital-to-analog conversion (DAC) unit, and a reconstruction (anti-image) filter.

As shown in the diagram, the analog input signal, which is continuous in time and amplitude,

is generally encountered in our real life. Examples of such analog signals include current, voltage,  

temperature, pressure, and light intensity.

Usually a transducer (sensor) is used to convert the non-electrical signal to the analog

electrical signal (voltage). This analog signal is fed to an analog filter, which is applied to limit the

frequency range of analog signals prior to the sampling process. The purpose of filtering is to

significantly attenuate aliasing distortion.

The band-limited signal at the output of the analog filter is then sampled and converted via

the ADC unit into the digital signal, which is discrete both in time and in amplitude.
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The DS processor then accepts the digital signal and processes the digital data according to

DSP rules such as lowpass, highpass, and bandpass digital filtering, or other algorithms for different

applications. Notice that the DS processor unit is a special type of digital computer and can be a

general-purpose digital computer, a microprocessor, or an advanced microcontroller; furthermore,

DSP rules can be implemented using software in general.

With the DS processor and corresponding software, a processed digital output signal is

generated. This signal behaves in a manner according to the specific algorithm used

The DAC unit converts the processed digital signal to an analog output signal. The signal is  

continuous in time and discrete in amplitude (usually a sample-and-hold signal). The final block in  

Fig. (1.1) is designated as a function to smooth the DAC output voltage levels back to the analog  

signal via a reconstruction (anti-image) filter for real-world applications.

1.2 Basic Digital Signal Processing

1.2.1 Digital Filtering

Consider the situation shown in Fig. (1.2), of a digitized noisy signal containing a useful

low-frequency signal and noise that occupies all of the frequency range. After ADC, the digitized

noisy signal x(n), where n is the sample number, can be enhanced using digital filtering. Since our

useful signal contains the low-frequency component, the high frequency components above that of

our useful signal are considered as noise, which can be removed by using a digital lowpass filter.

After processing the digitized noisy signal x(n), the digital lowpass filter produces a clean

digital  signal  y(n).  The  cleaned signal y(n) is applied to another DSP algorithm for a different  

application or convert it to the analog signal via DAC and the reconstruction filter.

The digitized noisy signal and clean digital signal, respectively, are plotted in Fig. (1.3),

where the top plot shows the digitized noisy signal, x(n), while the bottom plot demonstrates the

clean digital signal ,y(n), obtained by applying the digital lowpass filter.
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1.2.2 Signal Frequency (Spectrum) Analysis

As shown in Figure 1.4, certain DSP applications often require that time domain information  

and the frequency content of the signal be analyzed.

Figure 1.5 shows a digitized audio signal and its calculated signal spectrum (frequency

content), defined as the signal amplitude versus its corresponding frequency. It is also called fast

Fourier transform (FFT).

Figure 1.5 Audio signal and its spectrum
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The plot in Figure 1.5 (a) is a time domain display of the recorded audio signal with

frequency of 1,000 Hz sampled at 16,000 samples per second, while the frequency content display

of plot (b) displays the calculated signal spectrum versus frequencies, in which the peak amplitude is

clearly located at 1,000 Hz.

As another practical example, we often perform spectral estimation of a digitally recorded

speech or audio (music) waveform using the FFT algorithm in order to investigate spectral

frequency details of speech information. Figure 1.6 shows a speech signal produced by a human in

the time domain and frequency content displays. The top plot shows the digital speech waveform

versus its digitized sample number, while the bottom plot shows the frequency content information

of speech for a range from 0 to 4,000 Hz. We can observe that there are about ten spectral peaks,

called speech formants, in the range between 0 and 1,500 Hz. Those identified speech formants can

be used for applications such as speech modeling, speech coding, and speech feature extraction for

speech synthesis and recognition,

Figure 1.6 Speech sample and speech spectrum

1.3 Digital Signal Processing Applications

The list below by no means covers all DSP applications. Many more areas are increasingly

being explored by engineers and scientists. Applications of DSP techniques will continue to have  

profound impacts and improve our lives.
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1. Digital audio and speech: Digital audio coding such as CD players, digital crossover, digital

audio equalizers, digital stereo and surround sound, noise reduction systems, speech coding,

data compression and encryption, speech synthesis and speech recognition.

2. Digital telephone: Speech recognition, high-speed modems, echo cancellation, speech

synthesizers, DTMF (dual-tone multi frequency) generation and detection, answering

machines.

3. Automobile industry: Active noise control systems, active suspension systems, digital audio

and radio, digital controls.

4. Electronic communications: Cellular phones, digital telecommunications, wireless LAN

(local area networking), satellite communications.

5. Medical imaging equipment: ECG analyzers, cardiac monitoring, medical imaging and

image recognition, digital x-rays and image processing.

6. Multimedia: Internet phones, audio, and video; hard disk drive electronics; digital

pictures;

digital cameras; text-to-voice and voice-to-text technologies



Lec:2 Signal Sampling and Reconstruction

2.1 Sampling of Continuous Signal

Figure 2.1 shows an analog (continuous-time) signal (solid line) defined at every point over  

the time axis and amplitude axis. Hence, the analog signal contains an infinite number of points.

Figure 2.1 Display of the analog (continuous) signal and display of digital samples versus the  

sampling time instants.

It is impossible to digitize an infinite number of points. Furthermore, the infinite points are

not appropriate to be processed by the digital signal (DS) processor or computer, since they require

an infinite amount of memory and infinite amount of processing power for computations. Sampling

can solve such a problem by taking samples at the fixed time interval, as shown in Figure 2.1 and

Figure 2.2, where the time T represents the sampling interval or sampling period in seconds.

Figure 2.2 Sample-and-hold analog voltage for ADC.

As shown in Figure 2.2, each sample maintains its voltage level during the sampling interval  

T to give the ADC enough time to convert it. This process is called sample and hold.
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For a given sampling interval T, which is defined as the time span between two sample  

points, the sampling rate is therefore given by:

s

s
T

f 
1

Samples per second (Hz)(2.1)

After the analog signal is sampled, we obtain the sampled signal whose amplitude values are

taken at the sampling instants, thus the processor is able to handle the sample points. Next, we have

to ensure that samples are collected at a rate high enough that the original analog signal can be

reconstructed or recovered later.

In other words, we are looking for a minimum sampling rate to acquire a complete

reconstruction of the analog signal from its sampled version.

If an analog signal is not appropriately sampled, aliasing will occur, which causes unwanted

signals in the desired frequency band.

The sampling theorem guarantees that an analog signal can be in theory perfectlyrecovered

as long as the sampling rate is at least twice as large as the highest-frequency component of the  

analog signal to be sampled. The condition is described as:

fs  ≥ 2 fmax (2.2)

Where, fmax is the maximum-frequency component of the analog signal to be sampled. For

example, to sample a speech signal containing frequencies up to 4 kHz, the minimum sampling rate

is chosen to be at least 8 kHz, or 8,000 samples per second; to sample an audio signal possessing

frequencies up to 20 kHz, at least 40,000 samples per second, or 40 kHz, of the audio signal are

required.

Figure 2.3 depicts the sampled signal xs(t) obtained by sampling the continuous signal x(t) at

a sampling rate of fs samples per second.
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Figure 2.3 The simplified sampling process

Mathematically, this process can be written as the product of the continuous signal and the

sampling pulses (pulse train):

xs(t) = x(t) p(t) (2.3)

Where, p(t) is the pulse train with a period T = 1/ fs.

From the spectral analysis shown in Fig. 2.4, it is clear that the sampled signal spectrum

consists of the scaled baseband spectrum centered at the origin and its replicas centered at the

frequencies of  nfs (multiples of the sampling rate) for each of n = 1,2,3, . . . .In Figure 2.4, three

possible sketches are classified. Given the original signal spectrum X(f) plotted in Figure 2.4(a), the

sampled signal spectrum is plotted in Figure 2.4(b), where, the replicas have separations between

them. In Fig. 2.4(c), the baseband spectrum and its replicas are just connected. In Fig. 2.4(d), the

original spectrum and its replicas are overlapped; that is, there are many overlapping portions in the

sampled signal spectrum.

If applying a lowpass reconstruction filter to obtain exact reconstruction of the original signal

spectrum, equation (2.2) must be satisfied. This fundamental conclusion is well known as the

Shannon sampling theorem, which is formally described below:

For a uniformly sampled DSP system, an analog signal can be perfectly recovered as long as

the sampling rate is at least twice as large as the highest-frequency component of the analog

signal to be sampled.

We summarize two key points here.

1. Sampling theorem establishes a minimum sampling rate for a given bandlimited analog

signal with the highest-frequency component fmax. If the sampling rate satisfies equation

(2.2), then the analog signal can be recovered via its sampled values using the lowpass filter,

as described in Fig. 2.4(b).

2. Half of the sampling frequency (fs / 2) is usually called the Nyquist frequency (Nyquist

limit), or folding frequency. The sampling theorem indicates that a DSP system with a

sampling rate of fs can ideally sample an analog signal with its highest frequency up to half

of the sampling rate without introducing spectral overlap (aliasing). Hence, the analog signal



can be perfectly recovered from its sampled version as described in Fig. 2.4 (c). Fig. 2.4(d)  

shows aliasing.

Fig. 2.4 plots of the sampled signal spectrum.

Example(1)

Suppose that an analog signal is given as

and is sampled at the rate of 8,000 Hz.

.aSketch the spectrum for the original signal.

.bSketch the spectrum for the sampled signal from 0 to 20 kHz.

Solution:

The two-sided spectrum is plotted as shown in Fig. 2.5 (a). After the analog signal is sampled at the

rate of 8,000 Hz, the sampled signal spectrum and its replicas centered at the frequencies  nfs, each

with the scaled amplitude being 2.5/T, are as shown in Fig. 2.5(b)
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Fig. 2.5 (a) Fig. 2.5(b)

Notice that the spectrum of the sampled signal shown in Figure 2.5(b) contains the images of

the original spectrum shown in Figure 2.5(a); that the images repeat at multiples of the sampling

frequency fs (for our example, 8 kHz, 16 kHz, 24 kHz, . . . ); and that all images must be removed,

since they convey no additional information.

2.2 Signal Reconstruction

Two simplified steps are involved, as described in Figure 2.6. First, the digitally processed

data y(n) are converted to the ideal impulse train ys(t), in which each impulse has its amplitude

proportional to digital output y(n), and two consecutive impulses are separated by a sampling period

of T; second, the analog reconstruction filter is applied to the ideally recovered sampled signal ys(t)

to obtain the recovered analog signal.

The following three cases are listed for recovery of the original signal spectrum:

Nyquist frequency is equal to the maximum frequency of the analog signal

x(t), an ideal lowpass reconstruction filter is required to recover the analog signal spectrum. This is

an impractical case.

In this case, there is a separation between the highest-frequency edge of the

baseband spectrum and the lower edge of the first replica. Therefore, a practical lowpass

reconstruction (anti-image) filter can be designed to reject all the images and achieve the original

signal spectrum.

This is aliasing, where the recovered baseband spectrum suffers spectral

distortion, that is, contains an aliasing noise spectrum; in time domain, the recovered analog signal

may consist of the aliasing noise frequency or frequencies. Hence, the recovered analog signal is

incurably distorted.

1
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Fig. 2.6 Signal notations at reconstruction stage.

Example(2)

Assuming that an analog signal is given by

and it is sampled at the rate of 8,000 Hz,

a. Sketch the spectrum of the sampled signal up to 20 kHz.

b. Sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff  

frequency of 4 kHz is used to filter the sampled signal (y(n) = x(n) in this case) to recover  

the original signal.

Solution: Using Euler’s identity, we get

The two-sided amplitude spectrum for the sinusoids is displayed in Figure 2.7 (a). The recovered  

spectrum is shown in Fig. 2.7 (b)

1
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Fig. 2.7 (a) Fig. 2.7 (b)

2.2.3 Aliasing noise level

Given the DSP system shown in Fig. (2.8), where we can find the percentage of the aliasing  

noise level using the symmetry of the Butterworth magnitude function and its first replica. Then:-

Fig. 2.8 DSP system with anti-aliasing filter

Aliasing noise level % = c

ac

f  f
0  f  f

1 ( sa ) 2n

fc

1 ( f/ f )2n

(2.4)

Where, n is the filter order, f a is the aliasing frequency, f c is the cutoff frequency, and f s is the

sampling frequency.

Example (3)

In a DSP system with anti-aliasing filter, if a sampling rate of 8,000 Hz is used and the anti-

aliasing filter is a second-order Butterworth lowpass filter with a cutoff frequency of 3.4 kHz,

a. Determine the percentage of aliasing level at the cutoff frequency.

b. Determine the percentage of aliasing level at the frequency of 1,000 Hz.

1
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Solution:

1
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Digital Signals and SystemsLec. 3

3.1 Digital Signals

1- Digital unit-impulse function 2- Digital unit-step function

3- Sinusoidal sequence 4- Exponential sequence

x(n) = cos wn , 0 ≤ n ≤ ∞ x(n) = e -jwn , 0 ≤ n ≤ ∞

Fig. (3.1) Some digital signals

3.2 Generation of Digital Signals

To develop the digital sequence from its analog signal function is by applying:

(3.1)

Example(1): assuming a DSP system with a sampling time interval of 125 microseconds,  

Convert each of the following analog signals x(t) to the digital signal x(n).

Solution:

1
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3.3 Power Signals:

Periodic signals are power signals because their energy per cycle is finite.



dt  Cn  

n  

power 
T
0

22
f (t)

1 T

( ) (3.2)

Where:


T

n
T

C o

0
f (t) e jnw t dt

1
, wo= 2 π fo (3.3)



n
e jnwotf (t)  C

n 

(3.4)


T

0

1

T
f (t) f (t  ) dt( ) (3.5)

3.4 Energy Signals:

Non-periodic signals are called an energy signals because their power → 0

12









2  

F (W ) 2 dW  ()f (t)dt energy  (3.6)

Where:



 f (t) e jwt dtF (W ) (3.7)





( ) f (t) f (t   ) dt (3.8)

3.5 Classification of Systems  

3.5.1 Linear System

Figure 3.2 illustrates that the system output due to the weighted sum inputs α x1(n) ± β

x2(n) is equal to the same weighted sum of the individual outputs obtained from their

corresponding inputs, that is, y(n) = α y1(n) ± β y2(n), where α and β are constants. Here, the

principle of "superposition" is applied.

1
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Fig. (3.2) Digital linear system

3.5.2 Time-Invariant System

A time-invariant system is illustrated in Figure 3.3. If the system is time invariant and

y1(n) is the system output due to the input x1(n), then the shifted system input x1(n − n0) will  

produce a shifted system output y1(n − n0).

Fig. 3.3 Illustration of linear time-invariant system  

Example 2: Given the linear systems:

a. y(n) = 2x(n − 5)

b. y(n) = 2x(3n),

Determine whether each of the following systems is time invariant.

Solution:

(aLet the input and output be x1(n) and y1(n), respectively; then the system output is y1(n) =

2x1(n − 5). Again, let x2(n) = x1(n − n0) be the shifted input and y2(n) be the output due to the

shifted input. We determine the system output using the shifted input as

y2(n) = 2x2(n −5) = 2x1(n − n0 − 5):

Meanwhile, shifting y1(n) = 2x1(n − 5) by n0 samples leads to  

y1(n − n0) = 2x1(n − 5 − n0)

We can verify that y2(n) = y1(n − n0). Thus the shifted input of n0 samples causes the  

system output to be shifted by the same n0 samples, thus the system is time invariant.

(bLet the input and output be x1(n) and y1(n), respectively; then the system output is y1(n)

=2x1(3n). Again, let the input and output be x2(n) and y2(n), where x2(n) = x1(n − n0), a shifted  

version, and the corresponding output is y2(n). We get the output due to the shifted input

x2(n) = x1(n − n0) and note that x2(3n) = x1(3n − n0):  

y2(n) = 2x2(3n) = 2x1(3n − n0):

On the other hand, if we shift y1(n) by n0 samples, which replaces n in

1
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y1(n) = 2x1(3n) by n − n0, it yield

y1(n − n0) = 2x1(3(n − n0)) = 2x1(3n − 3n0):

Clearly, we know that y2(n) ≠ y1(n − n0). Since the system output y2(n) using the input shifted by

n0 samples is not equal to the system output y1(n) shifted by the same n0 samples, the system is

not time invariant.

3.5.3 Causal System:

A causal system is one in which the output y(n) at time n depends only on the current  

input x(n) at time n, its past input sample values such as x(n − 1), x(n− 2), . . . : Otherwise, if a

system output depends on the future input values, such as x(n + 1), x(n + 2), . . . , the system is  

noncausal. The noncausal system cannot be realized in real time.

Example 3: Given the following linear systems,  

a. y(n) = 0.5x(n) + 2.5x(n − 2), for n ≥ 0

b. y(n) = 0.25x(n − 1) + 0.5x(n + 1) − 0.4y(n − 1), for n ≥ 0,  

Determine whether each is causal.

Solution:

(aSince for n ≥ 0, the output y(n) depends on the current input x(n) and its past value x(n − 2),  

the system is causal.

(bSince for n ≥ 0, the output y(n) depends on the current input x(n) and its future value x(n + 2),

the system is noncausal.

3.5.4. Stability:

A stable system is one for which every bounded input produces a bounded output

(BIBO). The system is stable, if its transfer function vanishes after a sufficiently long time. For a  

stable system:



k 

S  h(k)  (3.9)

Where h(k) = unit impulse response

3.6 Difference Equations and Impulse Responses

A causal, linear, time-invariant system can be described by a difference equation having  

the following general form:

(3.10)

1
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Where a1, . . . , aN and b0, b1, . . . , bM are the coefficients of the difference equation. Equation  

(3.10) can further be written as:

(3.11)

Notice that y(n) is the current output, which depends on the past output samples y(n − 1),

. . . , y(n − N), the current input sample x(n), and the past input samples, x(n−1), . . . , x(n − M).

Example4: Given a linear system described by the difference equation

y(n) = x(n) + 0.5x(n − 1), Determine the nonzero system coefficients.

Solution: a. By comparing Equation (3.11), we have, b0 = 1, and b1 = 0.5

3.7 System Representation Using Its Impulse Response

A linear time-invariant system can be completely described by its unit-impulse response,  

which is defined as the system response due to the impulse input δ(n) with zero initial

conditions, depicted in Figure 3.3. Here x(n) = δ(n)and y(n) = h(n).

Fig. 3.4 Representation of a linear time-invariant system using the impulse response.

Example 5: Given the linear time-invariant system

y(n) = 0.5x(n) + 0.25x(n − 1) with an initial condition x(−1) = 0

.aDetermine the unit-impulse response h(n).

.bDraw the system block diagram.

.cWrite the output using the obtained impulse response.

Solution:

a. h(n) = 0.5 δ(n) + 0.25 δ(n − 1) , where h(0)= 0.5, h(1) = 0.25 and h(n) = 0 elsewhere.  

b.

1
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c. y(n) = h(0) x(n) + h(1) x( n − 1)

From this result, it is noted that if the difference equation without the past output terms, y(n − 1),

. . . , y(n − N), that is, the corresponding coefficients a1, . . . , aN, are zeros, the impulse response  

h(n) has a finite number of terms. We call this a finite impulse response (FIR) system.

In general, we can express the output sequence of a linear time-invariant system from its  

impulse response and inputs as:

y(n) = . . .. + h(−1)  x(n+1) + h(0) x(n) + h(1) x(n−1) + h(2) x(n−2) +. . . ..(3.12)

Equation (3.12) is called the digital convolution sum.

Example 6: Given the difference equation

y(n)= 0.25 y(n − 1) + x(n) for n ≥ 0 and y(−1) = 0,

.aDetermine the unit-impulse response h(n).

.bDraw the system block diagram.

.cWrite the output using the obtained impulse response.

.dFor a step input x(n) = u(n), verify and compare the output responses for the first three output  

samples using the difference equation and digital convolution sum (Equation 3.12).

Solution:

a. Let x(n) = δ(n), then h(n) = 0.25 h(n − 1) + δ(n)

To solve for h(n), we evaluate

h(0) = 0.25 h(−1) + δ(0) = 0.25 ( 0 ) + 1 = 1

h(1) = 0.25 h(0) + δ(1) = 0.25 ( 1 ) + 0 = 0.25

h(2) = 0.25 h(1) + δ(2) = 0.25 ( 0.5 ) + 0 = 0.0625

. . .

With the calculated results, we can predict the impulse response as:

h(n) =( 0.25) n u(n) = δ (n) + 0.25 δ (n − 1) + 0.0625 δ (n − 2) + . . . …..

b. The system block diagram is given below

c. The output sequence is a sum of infinite terms expressed as  

y(n) = h(0) x(n) + h(1) x(n − 1) + h(2)x(n − 2) + . . .

= x(n) + 0.25x(n − 1) + 0.0625x(n − 2) + . . . 1
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d. From the difference equation and using the zero-initial condition, we have

Applying the convolution sum in Equation (3.12) yields:

Notice that this impulse response h(n) contains an infinite number of terms in its duration due to

the past output term y(n − 1). Such a system as described in the preceding example is called an

infinite impulse response (IIR) system.

3.8 Digital Convolution

(3.13)

N = N1 + N2 -1. Where N1 = number of samples of x(n), N2 = number of samples of h(n), and  N = 

total number of samples.

3.8.1 Graphical method:

Example7: Find y(n)  x(n)  h(n) usinggraphical method 2
0



2
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2
2

3.8.2 Table lookup method

y(0) = 9

y(1) = 9

y(2) = 11

y(3) = 5

y(4) = 2

3.8.3 Matrix by Vector method  

Example7: Ifx(n) = [ 0.5 0.5 0.5 ], and h(n) = [ 3 2 1]




 

0.5

11.5
0

0.5


0

0 
0.50
0.50.5


0.50.50.5

0.5

00.5


y(4)

y(3)


2  3    y(2)

32.5y(1) 
0 1.5y(0)

3.8.4 Linear convolution and circular convolution

Linear convolution:



x1 (n) x2 (n)  x1 (n  k) x2 (k)  x1 (k) x2 (n  k)
k  k  

(3.14)

Circular

convolution: N1N1

x1 (n) N    x2 (n) x1 ( (nk)mod N ) x2 (k) x1 (k) x2 ( (n k) mod N )
k  0k 0

(3.15)

If both x1(n) and x2(n) are of finite length N1 and N2 and defined on [ 0 N1−1 ], and [0

N2 −1 ] respectively, the value of N needed so that circular and linear convolution are the same

on [0 N-1] is : N ≥ N1 + N2 − 1

Example 8: If x(n) = [ 1 2 3 2 ], and h(n) = [ 1 1 2]. Find y(n) such that linear and circular  

convolution are the same.

Solution:

N = 4 + 3 – 1 = 6

Then x(n) = [ 1 2 3 2 0 0 ] and h(n) = [ 1 1 2 0 0 0]

3 2 1

3 9 6 3

1 3 2 1

2 6 4 2



x(n) is arranged in clockwise direction (italic numbers),while h(n) is arranged in the opposite

clockwise direction (bold numbers). Each time, only h(n) will be shifted with the clockwise

direction to find y(n). Note: the reference point is * and, the arrows represent multiplication

process. Finally, addition process is performed.

y(0) = 1(1) = 1 y(1)= 1(1) + 2(1) = 3 y(2)= 2(1)+2(1)+3(1)=7

y(3)= 2(2)+3(1)+2(1)=9 y(4)= 3(2)+2(1)= 8 y(5)= 2(2)= 4

Using table lookup method:

y(0)= 1

y(1)= 3

y(2)= 7

y(3)= 9

y(4)= 8

y(5)= 4

Example(9): Use graphical method to find circular convolution x1 (n) N x2 (n) , if N = 4, x1(n)=  

[1 2 2 0] and x2(n)= [ 0 1 2 3 ]

Solution: Applying eq. (3.15), then

3

y(n)  x1 (k) x2 ((n  k) mod 4)
k0

3

y(0)  x1(k) x2 ((k) mod 4)
k0

y(0) = x1(0) x2(-0 ● 4) + x1(1) x2(-1 ● 4) + x1(2) x2(-2 ● 4) + x1(3) x2(-3 ● 4)

● = mod addition

1 1 2

1 1 1 2

2 2 2 4

3 3 3 6

2 2 2 4

2 1 1*

0 0 1*

2 3 2

0 0 0

0 2 1*

0 0 1*

2 3 2

0 0 1

0 0 2*

0 0 1*

2 3 2

0 1 1

2
3

0 0 0*

0 0 1*

2 3 2

1 1 2

1 0 0*

0 0 1*

2 3 2

1 2 0

1 1 0*

0 0 1*

2 3 2

2 0 0



y(0) = x1(0) x2(0) + x1(1) x2(3) + x1(2) x2(2) + x1(3) x2(1) = 1(0) + 2(3) + 2(2) + 0 (1) = 10

And so on










14

10

6





 6


22

4b0124



 6



2

12 b112 4

310
b2

 110


140314

 6


0

2

12 4 b3

310


0 114

3

4 b0 = 12 4 b1 + 2(3) =10 4 b2 + 2(1) + 0 (3)=14 4 b3 +6+0+0 =6

b0 = 3 b1 = 1 b2 = 3 b3 = 0

So, x(n) = [ 3 1 3 ]

x1(k) x2(-k) x2((0-k) mod 4)

3 3

2 2 2

1 1 1

0 0 0

0 1 2 3 k -3 -2 -1 0 k 0 1 2 3 k

k

x2((2-k) mod 4)

3

2

1

0

012 3 k

x2((3-k) mod 4)

3

2

1

0

0123 k

9

x2((1-k) mod 4)

3

2

1

0

01   23

y(n)  

10

7
4

0123n

.9Deconvolution:

.1Iterative approach

Using equation (3.14) and assuming causal system (started at k =0), then:  

y(0) = x(0) h(0),then x(0) = y(0) / h(0)

y(1) = h(1) x(0) + h(0) x(1) , then x(1) = ( y(1) – h(1) x(0) ) / h(0)

.2Polynomial Approach:

A long division process is applied between two polynomials. For causal system, the remainder is  

always zero.

If y(n) = [ 12 10 14 6] and h(n) = [ 4 2 ]

Then y = 12 + 10 x + 14 x2 + 6 x3, and h = 4 + 2 x. Applying long division, we 

obtain  i/p = 3  + x  + 3 x2.Then x(n) = [ 3 1 3 ]

.3Graphical method

2
4



Lec. 9 – Part 2

9.6 Finite Impulse Response (FIR) filter

In many cases a linear phase c/cs is required throughout the pass-band of the filter to  

preserve the shape of a given signal within the pass-band. Assume a LP filter with:






periodicfor all other W



W W

o

o

W  W 

e jW


H (e jW )  0 (9.32)

Y(ejW) = X(ejW ) . H(ejW ) = X(ejW ) . e – j W α

Y(Z) = X(Z) . Z – α

y(n) = x (n – α )

(9.33 a)

(9.33 b)

(9.34)

The linear phase filter did not alter the shape of the original signal, simply translated it by an  

amount α, as shown in Fig. (9.9)

Fig.(9.9) The effect of (a) linear phase and (b) nonlinear phase c/cs on steady state outputs  

with identical magnitude frequency response curves

A causal IIR filter can not produce a linear phase c/cs and that only special forms of FIR filters  

can give linear phase.

The necessary conditions for linear phase:

1. h(n) have finite duration ( for causal FIR filter, h(n) begins at zero and ends at N-1)

7
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(9.35)h(n) = h( N-1-n), n = 0, 1, …., N-1

2. Symmetric about its mid-point ( see Fig. (9.10) )

Fig. (9.10) General shapes of h(n) that give linear phase for odd and even N.

has linear phase. For NIf h(n) is as given in the above conditions, we now show that H(ejW )  

even:

N1

H (e jW ) h(n) e j W n h(n) e j Wn

nn0

(Finite duration) (9.36)

H (e j W ) H (e j W)
12 (9.37)

( N /2)1N1

H (e j W ) h(n) e j W n h(n) e j Wn

n0nN /2

Let m = N-1-n

( )1  2
0

2

N

m0
m( 

N 
) 1  

2

h(N 1m) e j W ( N 1m) h(m) e j W ( N1m)H (e j W ) (9.38)

( )1
22

( )1
NN

n0m0

H (e j W ) h(n) e j W n h(m) e j W ( N1m)
(9.39)




22

( )1  2

2
jW ( N 1n 

N 1
)

N

j W ( 
N 1

) jW ( n 
N1

)

ee


H (e j W ) h(n)e
n0

(9.40)








( )1  2

2

N

j W ( 
N1

)
2

N1
cos   [ W(n) ] H (e j W ) 2 h(n) e

n0

(9.41)

7
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

2 ) ]
2

For N even:

N

j W ( 
N 1

) 
( 
2

)1

N1
2 h(n) cos [ W (nH (e j W ) e (9.42)



magnitude

n0

Linear phase

For N odd:






) ]

22

(N3)/2

n0

jW ( 
N1

)
2

N1
)2 h(n) cos [ W (n

N1
H (e j W   )e{h( (9.43)

1


otherwise

otherwise






H(e jW ) 


0

N1  n  N 2 
w(n) 

 1



, window function





0

N1  n  N 2 
h(n) 

hd (n )

For N odd, the slope of – α = – (N–1) /2 causes a delay in the output of (N–1)/2 , which is an

integer number of samples, whereas for N even, the slope causes a non-integer delay. The non-

integer delay will cause the values of the sequence to be changed, which, in some cases, may be

undesirable.

9.7 Design of FIR filters using Windows

If hd(n) represents the impulse response of a desired IIR filter, then an FIR filter with  

impulse response h(n) can be obtained as follows:

h( n )  hd ( n ) . w( n)

2  

H d (e) W (e) d H  ( e) W (e)
jj (W   )jj

d

(9.44)

Fig. (9.11) Frequency response obtained by rectangularly windowing ideal LP impulse  

response.

8
0



8
1

As shown in Fig.(9.11), the convolution produces a smeared version of ideal LP frequency

response Hd( ejW). In general, the wider the main lobe of W( ejW), the more spreading, whereas

the narrower the main lobe ( larger N), the closer │ H( ejW)│comes to │ Hd( ejW)│.

Some of the most commonly used windows are:



Z - TransformLec. 5

5.1 Definition of Z.T

The z-transform is a very important tool in describing and analyzing digital systems. It  

also offers the techniques for digital filter design and frequency analysis of digital signals.

The z-transform of a causal sequence x(n), designated by X(z) or Z(x(n)), is defined as:

(5.1)

Where, z is the complex variable. Here, the summation taken from n = 0 to n = ∞ is according to

the fact that for most situations, the digital signal x(n) is the causal sequence, that is, x(n) = 0 for

n ≤ 0. For non-causal system, the summation starts at n = -∞. Thus, the definition in Equation

(5.1) is referred to as a one-sided z-transform or a unilateral transform. The region of

convergence is defined based on the particular sequence x(n) being applied. The z-transforms for

common sequences are summarized below:

3
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Example(1): Find Z.T including region of convergence of x(n) = - bn u( - n - 1)

Solution: the system is non- causal

1

X (Z ) b u(n 1) Z n (b / Z)n

n n 

Let m = - n



X (Z )  (Z / b)m  1(Z / b)m

m 1m0

m0

, x  1
x1



By using  xm  1  x  x2  x3  .... 
1

,(Z / b) 1orZ  b
1 (Z /b)Z b

1Z
X(Z)1



The region of convergence (ROC) is inside the unit circle only.

Example(2): Find Z.T including region of convergence of x(n) = an u( n)

1
n0n0

a Z 1

1 aZ1Z a



X(Z)an Zn (a Z1 ) n 
1


Z

,

Or │ Z│ > │ a │

The region of convergence (ROC) is outside the unit circle

only.

5.2 Properties of Z.T:

(5.2)

5.2.1 Linearity: The z-transform is a linear transformation, which implies

Z (a x1(n)  b x2 (n) )  a X1 (Z )  b X 2 (Z )

Where a and b are constants

5.2.2 Shift theorem (without initial conditions): Given X(z), the z-transform of a sequence x(n),  

the z-transform of x(n - m), the time-shifted sequence, is given by;

Z{ x( n m )} Z m X (Z) (5.3)

ImZ

b ReZ0

ImZ

aReZ

3
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5.2.3 Convolution: Given two sequences x1(n) and x2(n), their convolution can be determined as 

follows:

(5.4)



x(n)  x1(n)  x2  x1(k) x2 (n  k)  x1(n  k) x2 (k)
k k 

Where  designates the linear convolution. In z-transform domain, we have

X (Z)  X1 (Z) . X 2 (Z) (5.5)

5.2.4 Multiplication by exponential:

Z
Z

a

Z { a n x(n) }  X (Z ) (5.6.a)

Z eaZ
Z { ean x(n) } X(Z) (5.6.b)

5.2.5 Initial and final value theorems:

lim x(n)  lim X (Z)  x(0)initial value theorem
n 0Z 

(5.7.a)

final value theoremlim x(n)  lim Z 1 (Z 1) X (Z)
nZ1

(5.7.b)

5.2.6 Multiplication by n:

dZ { n x(n) }   ZX (Z)
dZ

(5.8)

Z

3
2

Z
a

 Z
dZ Z  2 Z cos w 12

dZ 2  Z cosw1

Example(3) : Find Z {(n  2) a(n2) cos[ w(n  2)] u(n  2) .  

The solution is:

 Z 2 Z{ n an cos wn u(n) }

 Z 2 (Z ) 
d

Z{ a n cos wn u(n) }
dZ



(5.9)

5.3 Inverse of Z.T

x(n)  Z 1 { X (Z)}

The inverse z-transform may be obtained by the following methods:

.1Using properties.

.2Partial fraction expansion method.

.3Residue method.

4. Power series expansion (the solution is obtained by applying long division because the  

denominator can't be analyzed. It is not accurate method compared with the above three  

methods)

Example(4): Find x(n), using properties , if

Solution:

Example(5): Find x(n) using partial fraction method , if:

3
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Solution:

Example(6) : Find x(n) using the residue theorem, if

(Z 1)2 (Z  2) (Z  3)

2Z
X (Z)



The residue theorem is:

x(n) = ∑ residues of X(Z) Z n-1 at the poles of X(Z) Z n-1 = a-1 + b-1 + c-1+ …. (5.10)

dZ

3
4

1 mn1

limm1

d m1

za
1 {(Z a)ZX(Z)},m is the order of thepole

(m1)!
a (5.11)



Solution:

n

n

22

12 Z n1

0!

2 Z n1

0!

3

2

d2Z1

1!

2

2

lim

lim

lim

x(n)  a b c n 
3 
 2 (2)n 

1
(3)n

(3)
(Z 1)  (Z  2)2

c

  2 (2)
(Z  1) (Z 3)

b

 n
dZ (z 2) (Z  3)

a

111

Z3
1

Z2
1

Z n1

Z1
1

5.4 Solution of linear constant coefficient difference equation using Z.T

1

Z{ x( n m )} Z m { X (Z ) x(k) Z k}
km

(5.12)

Example(7) : Solve y(n) – (3/2) y(n – 1) + (1/2) y(n – 2) = (1/4)n, y(-1) = 4, y(-2) = 10 for n ≥ 0

Solution:

4

3
5

4

Z

Z

y(n)  {
1

(
1

)n  (
1

)n 
2 

} u(n)  
3 423

Z 1(Z 
1

)Z 
1

42

Z (2 Z 2 
9 

Z 
1

)

Y (Z) 42

(Z 
1

) (Z 
1

) (Z 1)  
42

Y(Z) 
(1/ 3) Z


Z


(2 /3) Z

Z 
1

Z 
1

1 2Z 1Y(Z ){1
3

Z 1
1

Z 2 } 
22

Y (Z) 
3

{Y (Z ) . Z 1  y(1)} 
1

{Z 2 Y (Z)  Z 1 y(1) 
y(2)}

22



5.5 Relations between system representations:

Continuous time system Discrete time system

Differential equation Difference equation
Ha (S) H(Z)

H(jΩ) H(ejW)

Ha(t) = L-1 { Ha (S)} h(n) = Z-1 { H(Z) }

inverse of Z.TTake Z.T and solve for
Y(Z)/X(Z)

Difference eq.
H(Z) h(n)

Z.

TWrite in terms of Z-1 then  
Cross multiply and take inverse

If stable Z = e jW H( ejW)

3
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Lec. 6Discrete Fourier Transform and Signal Spectrum

.1Discrete Fourier Transform

In time domain, representation of digital signals describes the signal amplitude versus the

sampling time instant or the sample number. However, in some applications, signal frequency

content is very useful than as digital signal samples.

The algorithm transforming the time domain signal samples to the frequency domain

components is known as the discrete Fourier transform, or DFT. The DFT also establishes a

relationship between the time domain representation and the frequency domain representation.

Therefore, we can apply the DFT to perform frequency analysis of a time domain sequence. In

addition, the DFT is widely used in many other areas, including spectral analysis, acoustics,

imaging/ video, audio, instrumentation, and communications systems.

.2Fourier Series Coefficients of Periodic Digital Signals

To estimate the spectrum of a periodic digital signal x(n), sampled at a rate of fs Hz with

the  fundamental  period  T0  = NT,where there are N samples within the duration of the  

fundamental period and T = 1/fs is the sampling period. Fig. 6.1 shows periodic digital signal.

Fourier series expansion of a periodic signal  

x(t) in a complex form is:


0

1

0 T0

j k W t

k x(t) edt,k  
T

c

1 N1

,   k 
N n  0

ck  x(n) e


j
2  k n

N (6.2)

(6.1)

Fig. 6.1 periodic digital signal

Where, k is the number of harmonics corresponding to the harmonic frequency of kf0 and

W0 = 2π / T0 and f0 =1/T0 are the fundamental frequency in radians per second and the

fundamental frequency in Hz, respectively. To apply Equation (6.1), we substitute T0 = NT, W0=

2π / T0 and approximate the integration over one period using a summation by substituting dt = T

and t = nT. We obtain:

3
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Since the coefficients ck are obtained from the Fourier series expansion in the complex

form, the resultant spectrum ck will have two sides. Therefore, the two-sided line amplitude

spectrum │ck│ is periodic, as shown in Fig. 6.2.

Choosing one period, N = 4, we have x(0) = 0; x(1) = 1; x(2) = 0; and x(3) = −1. Using Eq. (6.2),

Fig. 6.2 Amplitude Spectrum of periodic Digital signal

As displayed in Figure 6.3 we note the following points:

.aOnly the line spectral portion between the frequency −fs/2 and frequency fs/2 (folding  

frequency) represents the frequency information of the periodic signal.

.bThe spectrum is periodic for every Nf0 Hz.

.cFor the kth harmonic, the frequency is f = kf0 Hz. f0 is called the frequency resolution.

Example(1):

The periodic signal x(t) = sin (2πt) is sampled using the rate fs = 4Hz.

.aCompute the spectrum ck using the samples in one period.

.bPlot the two-sided amplitude spectrum │ ck│ over the range from −2 to 2 Hz

Solution:

The fundamental frequency W0= 2π radians per

second and f0 = 1, and the fundamental period T0 = 1

second. Since using the sampling interval T = 1/fs = 0.25

second. The sampled signal is x(n) = sin (0.5 π n ), and

the first eight samples of it are plotted as shown

3
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Similarly c3 = j 0.5. Using periodicity, it follows that c−1 = c1= j0:5, and c−2 = c2 = 0.

b. The amplitude spectrum for the digital signal is sketched below:

6.3 Discrete Fourier Transform Formulas

Given a sequence x(n), 0 ≤ n ≤ N − 1, its DFT is defined as:

 x(n)W, for k 0,1,...N1
N1


n0

kn

N

N1

X (k) x(n)e
n 0

N


j 
2 k n

(6.3)

Where the factor WN (called the twiddle factor in some textbooks) is defined as

 N  N 

 2  2 
WN   e cos  j sin

 j 
2

N (6.4)

The inverse DFT is given by:

  X(k)W, for n 0,1,...N 1
1

NN
x(n)X (k)e

N1
k n

N

1 N1

n0n 0

j
2 k n 

N
(6.5)

We can use MATLAB functions fft() and ifft() to compute the DFT coefficients and the inverse  

DFT.

Example (2): Given a sequence x(n) for 0≤ n ≤ 3, where x(0) = 1, x(1) = 2, x(2) = 3, and x(3) =

4. Evaluate its DFT X(k).

Solution:

Since N = 4, W4= e−jπ/2 , then using:

3
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For K= 0, X(0) = 10. Similarly, X(1) = −2 + j 2 , X(2) = −2, X(3) = −2 −j 2

Let us verify the result using the MATLAB function fft():

X = fft([1 2 3 4])

X = 10.0000  −2.0000+ 2.0000i− 2.0000− 2.0000 − 2.0000i

Mapping the frequency bin k to its corresponding frequency is as follows:

(6.6)

Since ws = 2 π fs , then:

(6.7)

We can define the frequency resolution as the frequency step between two consecutive DFT  

coefficients to measure how fine the frequency domain presentation is and achieve

(6.8)

(6.9)

Example (3): In example (2), If the sampling rate is 10 Hz,

.aDetermine the sampling period, time index, and sampling time instant for a digital sample x(3)  

in time domain.

.bDetermine the frequency resolution, frequency bin number, and mapped frequency for each of  

the DFT coefficients X(1) and X(3) in frequency domain.

Solution:

3
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6.4 Amplitude Spectrum and Power Spectrum

One of the DFT applications is transformation of a finite-length digital signal x(n) into

the spectrum in frequency domain. Fig. 6.3 demonstrates such an application, where Ak and Pk are

the computed amplitude spectrum and the power spectrum, respectively, using the DFT

coefficients X(k).

First, we achieve the digital sequence x(n) by sampling the analog signal x(t) and

truncating the sampled signal with a data window with a length T0 = NT, where T is the sampling

period and N the number of data points. The time for data window is T0 = NT.

Fig. 6.3 Applications of DFT/ FFT

Next, we apply the DFT to the obtained sequence, x(n), to get the N DFT coefficients

(6.10)

We define the amplitude spectrum as:

(6.11)

Keeping original DC term at k = 0, a one-sided amplitude spectrum for equation (6.11) is:

(6.12)

Correspondingly, the phase spectrum is given by:

(6.13)

Besides the amplitude spectrum, the power spectrum is also used. The DFT power spectrum is  

defined as: 4
0



(6.14)

Similarly, for a one-sided power spectrum, we get:

Similarly:

Thus, the sketches for the amplitude spectrum, phase spectrum, and power spectrum are given in  

the below Figures:

K f AK ΦK in degree PK

1 25 0.7071 135 0.5

2 50 0.5 180 0.25

3 75 0.7071 -135 0.5

(6.15)

The frequency resolution is defined in equation (6.9). It follows that better frequency resolution  

can be achieved by using a longer data sequence.

Example (4) : Consider the sequence:

Assuming that fs = 100 Hz. Compute the

amplitude spectrum, phase spectrum, and

power spectrum.

Solution:

Since N = 4, DFT coefficients are: X(0) = 10, X(1) = −2 + j 2 , X(2) = −2, X(3) = −2 −j 2

4
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We can easily find the one-sided amplitude spectrum and one-sided power spectrum as:

We plot the one-sided amplitude spectrum for comparison:

Note that in the one-sided amplitude spectrum, the negative-indexed frequency components are

added back to the corresponding positive-indexed frequency components; thus each amplitude

value other than the DC term is doubled. It represents the frequency components up to the

folding frequency.

4
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Lec. 7Windowing and FFT

7.1 Spectral Estimation Using Window Functions

Consider the pure 1-Hz sine wave with 32 samples shown in Fig. 7.1. As shown in the  

figure, if we use a window size of N =16 samples, which is a multiple of the two waveform

cycles, the second window repeats with continuity. However, when the window size is chosen to  

be 18 samples, which is not a multiple of the waveform cycles (2.25 cycles), the second window

repeats the first window with discontinuity. It is this discontinuity that produces harmonic  

frequencies that are not present in the original signal (spectral leakage ). Fig.7.2 shows the

spectral plots for both cases using the DFT/FFT directly.

The amount of spectral leakage shown in the second plot is due to amplitude

discontinuity in time domain. The bigger the discontinuity, the more is the leakage. To reduce

the effect of spectral leakage, a window function can be used whose amplitude tapers smoothly

and gradually toward zero at both ends. Applying the window function w(n) to a data sequence

x(n) to obtain a windowed sequence xw(n) is better illustrated in Fig. 7.3 using :

(7.1)

Fig. 7.1 Sampling a 1-Hz sine wave using

(top) 16 samples per cycle and (bottom)

18 samples per cycle.

4
3

Fig. 7.2 Signal samples and spectra  

without and with spectral leakage.

Fig. 7.3 Illustration of the  

window operation.



The common window functions are listed as follows: 

The rectangular window (no window function):

(7.2)

The triangular window:

(7.3)

The Hamming window:

(7.4)

The Hanning window:

(7.5)

Plots for each window function for a size of 20 samples are shown in Figure 7.4.

Example (1): Considering the sequence x(0) = 1, x(1) = 2, x(2) = 3, and x(3) = 4, and given fs =

100 Hz, T = 0.01 seconds, compute the amplitude spectrum, phase spectrum, and power  

spectrum

.aUsing the triangular window function.

.bUsing the Hamming window function.

Solution:

(aSince N = 4, from the triangular window function given in equation (7.3), we have:

wtri(0) = 0, wtri (1) = 0.6667, wtri (2) = 0.6667, and wtri (3) = 0.  

Now, applying eq. (7.1), we have:

xw(0) = x(0) wtri(0) = 0. Similarly xw(1) = 1.3334, xw(2) = 2, and xw(3) = 0

Fig. 7.4 Plots  

of window  

sequences

4
4



Applying DFT equation (6.3) to xw(n) for K=0, 1, 2, and 3 , we have:

X(0)= 3.3334, X(1) = −2 − j1.3334 , X(2) = 0.6666, and X(3) = − 2 + j 1.3334

∆f = 1 / NT = 25 Hz

Applying equations (6.11), (6.13), and (6.14):

K AK ΦK in degree PK

1 0.6009 − 146.31 0.3611

2 0.1667 0 0.0278

3 0.6009 146.31 0.3611

b. Since N = 4, from the Hamming window function given in eq. (7.4), we have:

whm(0) = 0.08, whm(1) = 0.77, whm(2) = 0.77, and whm(3) = 0.08. The windowed sequence is  

computed using eq. (7.1) as:

xw(0) = x(0) whm(0) = 0.08, xw(1) = 1.54, xw(2) = 2.31, and xw(3) = 0.32

Applying DFT equation (6.3) to xw(n) for K=0, 1, 2, and 3 , we have:  

X(0)= 4.25, X(1) = −2.23 − j1.22 , X(2) = 0.53, and X(3) = − 2.23 + j 1.22

∆f = 1 / NT = 25 Hz

Applying equations (6.11), (6.13), and (6.14):

K AK ΦK in degree PK

1 0.6355 −151.32 0.4308

2 0.1325 0 0.0176

3 0.6355 151.32 0.4308

4
5



7.2 Application to Speech Spectral Estimation

The following plots show the comparisons of amplitude spectral estimation for speech  

data with 2,001 samples and a sampling rate of 8,000 Hz using the rectangular window (no

window) function and the Hamming window function. As demonstrated in Fig. 7.5 (two-sided  

spectrum) and Fig. 7.6 (one-sided spectrum), there is little difference between the amplitude

spectrum using the Hamming window function and the spectrum without using the window  

function. This is  due to the  fact  that when the data length  of the sequence  (e.g., 2,001 samples)

increases, the frequency resolution will be improved and spectral leakage will become less  

significant. However, when data length is short, reduction of spectral leakage using a window

function will come to be prominent.

7.3 Fast Fourier Transform

FFT is a very efficient algorithm in computing DFT coefficients and can reduce a very  

large amount of computational complexity (multiplications).

Consider  the  digital  sequence  x(n)  consisting  of  2m   samples,  where  m  is  a positive

integer—the number of samples of the digital sequence x(n) is a power of 2, N = 2, 4, 8, 16, etc.

If x(n) does not contain 2m samples, then we simply append it with zeros until the number of the  

appended sequence is equal to an integer of a power of 2 data points.

The number of points N = 2m, where the stages m = log 2 N.

In this section, we focus on two formats. One is called the decimation in- frequency

algorithm, while the other is the decimation-in-time algorithm. They are referred to as the radix-

2 FFT algorithms.

Fig. 7.6 Comparison of a one-sided

spectrum without using a window function

and a one-sided spectrum using the

Hamming window for speech data.

4
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Fig. 7.5 Comparison of a spectrum without

using a window function and a spectrum

using the Hamming window for speech

data.



7.3.1 Method of Decimation-in-Frequency (Reduced DIF FFT)

Beginning with the definition of DFT :

(7.6)

…..Equation (7.6) can beWhere, WN = e−jπ / N is the twiddle factor, and N = 0, 2, 4, 8, 16,  

expanded as:

(7.7)

If we split equation (7.7):

(7.8)

Then we can rewrite as a sum of the following two parts:

(7.9)

Modifying the second term in Equation (7.9) yields:

(7.10)

(7.11)

Now letting k = 2m as an even number achieves:

(7.12)

4
7

While substituting k = 2m + 1 as an odd number yields:



(7.13)

(7.14)

(7.15)

Where, a(n) and b(n) are introduced and expressed as:

(7.16)

(7.17)

Figure 7.7(a) illustrates the block diagram of N-point DIF FFT. Fig. 7.7(b) illustrates

reduced DIF FFT computation for the eight-point DFT, where there are 12 complex

multiplications as compared with the eight-point DFT with 64 complex multiplications. For a

data length of N, the number of complex multiplications for DFT and FFT, respectively, are

determined by:

Complex multiplications of DFT = N2, and

Complex multiplications of FFT (With Reduction) = (N / 2 ) log2

(N)

(7.18a)

(7.18b)

Fig. 7.7(a) Block diagram of DIF FFT

x(0) X(0)
N/4

N/4

N/4

x(N-1)N/4X(N-1)

N/2  

point

N/2  

point

N-

point

4
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The inverse FFT is defined as:

(7.20)

Fig. 7.8 Block diagram for the inverse of eight-point FFT.  

Reduced DIF IFFT

The twiddle factoris changed to be, and the sum is multiplied by a factor of  1/N. Hence, the 

inverse FFT block diagram is achieved as shown in Fig. 7.8

Fig. 7.7(b) The eight-point FFT (total twelve multiplications).

Reduced DIF FFT

Note: The input sequence is in normal order index and the output frequency bin number is in  

reversal bits order. The Butterfly structure for DIF FFT and DIT FFT is shown below:

ADIFCEDITF

BD GH

-1 N
W r

N
W r -1

NC = A+B, D = (A-B) W r (7.19a) , F= E +W r G, H= E -W r G (7.19b)
NN

4
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Example (2): Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0) = 1, x(1) = 2, x(2) = 3, and  

x(3) = 4,

.aEvaluate its DFT X(k) using the decimation-in-frequency FFT method.

.bDetermine the number of complex multiplications.

Solution:

 j
4

W 0 e
4

1andW 1 e
 j 

2
(1)  

4
 j 

2
(0)  

4

b) The number of complex multiplications is four, which can also be determined from eq.  

(7.18b), where N=4

7.3.2 Method of Decimation-in-Time (Reduced DIT FFT):

In this method, we split the input sequence x(n) into the even indexed x(2m) and x(2m + 1), each  

with N data points. Then Equation (7.6) becomes:

(7.21)

Using it follows that:

(7.22)

Define new functions as:

(7.23)

5
0



Note that:

(7.24)

Substituting Equations (7.24) into Equation (7.22) yields the first half frequency bins

(7.25)

Considering the following fact and using Equations (7.24):

(7.26)

Then the second half of frequency bins can be computed as follows:

(7.27)

The block diagram for the eight-point DIT FFT algorithm is illustrated in Fig.. 7.9

Fig.7.9  Theeight-pointFFTalgorithm  usingdecimation-in-time(twelvecomplex  

multiplications). Reduced DIT FFT

The index for each input sequence element can be achieved by bit reversal of the frequency  

index in a sequential order. Similar to the method of decimation-in-frequency, after we change

WN toin Fig. 7.9 and multiply the output sequence by a factor of 1/N, we derive the  inverse FFT 

block diagram for the eight-point inverse FFT in Fig. 7.10.

5
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Fig. 7.10 The eight-point IFFT using decimation-in-time (Reduced method).

Example(3): Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0) = 1, x(1) = 2, x(2) = 3, and  

x(3) = 4. Evaluate its DFT X(k) using the decimation-in-time FFT method.

Solution:

 K  K. 2 / NT

ana log frequency

(rad / sec)

WK  K. 2 / N 

digital frequency

(rad)

K 

frequency  

index

Bit reversalbit indexed

H.W Find DFT of the following sequence [ 1 -1 -1 -1 1 1 1 -1], using:

(aReduced DIT FFT

(bReduced DIF FFT

Ans :[02  j ( 2  2)2  j 22  j ( 2  2)42  j ( 2  2)

2  j 22  j ( 2  2)]

7.4 Properties of DFT for real x(n):

X (K)  X * (N  K)

Re { X (K ) } Re { X (N  K) }

Im { X (K) }  Im { X (N  K) }

x(n) 
1 

FFT [ X * (K )]*

N

(7.26)

5
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* means complex conjugate

For N even:

( N /2)1

K1 N

X (N /
2)

N 
{ X R (K ) cos( 

N 
n K ) X I (K ) sin ( 

N 
n K )}

N

X(0)
x(n) cosn

222

(7.27a)

For N odd:

(N1)/2

K1

N
{XR(K) cos(

N
nK) X I (K) sin (

N
nK)}

N

X(0)
x(n)

222
(7.27b)

x(n) X(K)

Real Real part is even, imaginary part is odd

Real and even Real and even

Real and odd Imaginary and odd

Example (4): Find x(n) for XR(K) and XI(K) , then find xa(t) if T = 0.1 sec.

2
for K  1, 2, ........

N
1  3

T
Kk  W / T  2  K / N T,t  n T,n 

t

a
888 0.180.180.18

for T  0.1sec.

xa (t)  0.1875 0.25 sin 2.5 t  0.5 cos5 t  0.4375sin 5 t  0.0625cos10 t

x  (t) 
1.5 


2 

{ (1) sin(
2t 

)  (2) cos ( 
2

2 
t 

)  (1.75) sin ( 
2

2 
t 

) } 
0.5 

cos n

XR(K) XI(K)

2

1.75

1.5 1

0

0.5 1

000

345 6 K
0000-1

1  2  3  4   5  67K-1.75

N=8 , then using eq.(7.27a):

x(n) 
1.5


2

{  (1) sin (
2

1n)  (2) cos(
2

2n)  (1.75)sin (
2

2n) }
0.5

cos n
888888

5
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7.5 DFT and Fourier transform relations:

The Fourier transform X(ejW) of an x(n) is given for all W:

(7.28)

N1

X (e jW ) x(n) e j W n x(n) e j W n , n 0,1,2,...N1
n0

From eq. (7.28), X(ejW) is a continuous function of W.  

The DFT (N-point) of an x(n) is given by:

N1

n0

,K 0,1,2....N1X(K) x(n) e j 2 K n / N
(7.29)

Comparing eq.(7.28) and eq.(7.29), the DFT of x(n) is the sampled version of the Fourier  

transform sequence as shown below

W (2 K / N)
X (K) X (ejW ), K 0, 1, 2,...N1. (7.30)

X(ejW) X(K)

π 2π W K

2π/N 4π/N2π(N-1) /N
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Lec.8Analog Filter Design

.1Introduction:

Let us review analog filter design using lowpass prototype transformation. This method  

converts the analog lowpass filter with a cutoff frequency of 1 radian per second, called the

lowpass prototype, into practical analog lowpass, highpass, bandpass, and bandstop filters with  

their frequency specifications.

.2Butterworth Filters

8.2.1 Butterworth low-pass filter (LPF)

A typical frequency response for a Butterworth low-pass filter of order n is shown in Fig.

8.1.

c

n

1

1(/ )2n

2H ( j) (8.1)

alln

Properties:

Hn ( j)
21for

0

n

2 
1 

forallfiniten
2

H ( j) c

Fig.8.1 Butterworth LPF c/cs

H n ( j)

Hn ( j)

c     
0.707(3.0103dB)

2 is monotonically decreasing function of Ω, it is also called maximally flat at the

origin since all derivatives exist and are zero. As n → ∞ , we get ideal response.

The normalized LP Butterworth is obtained when:  

Ωc = 1 rad / sec.

Substituting S = j Ω in eq. (8.1), and rearrange to get the LP Butterworth poles, then:  

S = (−1) [(n +1) / 2 n ]

(8.2a)

(8.2.b)

For n odd, SK   1  k  / n, k  0,1, 2,...,2n 1

For n even, SK   1  (k  / n)  ( / 2 n ), k  0,1, 2,...,2n 1

For stable and causal filter:

11

kn

n 
(S  S )B (S)

LHP poles

H (S)  (8.3)

Bn (S) : Butterworth polynomial of order n (see Table (1) ).

5
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LHP: Left half plane.

Example(1): Find the transfer function H1(S) for the normalized Butterworth filter of order one.

Solution: applying eq.(8.2a), where n=1, k = 0,1

S0  1 0  H n (S)

S1  1   H n (S) . Using eq. (8.3) and taking LHP poles S1:

11
1 

S  (1)S 1
H (S)

8.2.2 Analog- to analog transformation

To obtain Butterworth filters with cutoff frequencies other than 1 rad /sec. It is

convenient to use 1 rad /sec. Butterworth filters as prototypes and apply analog-to-analog

transformation (see Table (2)). The transformational method is not limited in its application to

Butterworth filters.

ImS

ReS**
Hn(S)Hn(-S)

5
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8.2.3 Design Equations of Butterworth Filters:

A Butterworth LPF Filter of order n is given by the following equation:

 2 log10 ( 1 / r  )

log1) / (100.1 k2 1)}{ (10
 0.1 k1

n  
10

 (8.4)

Here, 1 / r u /r , see Table (2).

Where, k1, k2, u , and r are the pass-band gain and stop-band attenuation with their  

relative frequencies respectively(see Table (2)).

To satisfy our requirement at  u   exactly, then:

1) 1 / 2 n
 0.1k1

 c   u  / (10 (8.5a)

cr
2 1) 1 / 2 n  / (10

To satisfy our requirement at r exactly, then:

 0.1 k
(8.5b)

Ωc is the cutoff frequency at – 3dB

Example (2): design an analog Butterworth LPF that has a – 2 dB butter cutoff frequency of 20  

rad/sec. and at least 10 dB of attenuation at 30 rad/sec.

Solution: Applying eq. (8.4), where k1= -2 dB, k2 = -10 dB, u = 20 rad/sec., and r = 30  rad/sec

2 log10 ( 20 / 30 ) 

log{ (10
0.2 
1) / (101 1)}

n  10  3.3709  4

To satisfy our requirement at u exactly, then:

 c    20 / (101) 21.3836 rad / sec
0.21 / 8

From Table (1) of normalized Butterworth LPF ( Ωc =1 rad/ sec ) with n = 4 :

1
4

( S 2 0.76536S 1) ( S 2 1.84776S 1)
H (S) 

Using Table (2) and applying LP → LP transformation, S→ S / 21.3836, and rearranging:

0.20921106

5
6

( S 2 16.3686 S  457.394) ( S 2 39.5176 S  457.394)
H(S) 

For Butterworth HPF:

1- Put 1 / r r /u in equation (8.4), and find its order n .(see Table(2))



2- Use Table (1) to find the normalized Butterworth LPF equation with order n.

3- Apply LP → HP transformation, S→ Ωc / S, and rearrange the equation obtained in step  

2.

For Butterworth BPF:

1- Calculate Ωr = min {│A│, │B│ } using equations given in Table (2). Find the filter  

order using eq.(8.4)

2- Use Table (1) to find the normalized Butterworth LPF equation with order n.

S ( u  l )

S 2   
3- Apply LP → BP transformation, S lu , and rearrange the equation

obtained in step 2  

For Butterworth BSF:

Refer to Table (2) to see the variables.

Fig. 8.2 Butterworth BPF  

Example (3): Design an analog Butterworth BPF with the following c/cs:

A – 3.0103 dB upper and lower cutoff frequencies of 50 Hz and 20 KHz.  

A stop-band attenuation of at least 20 dB at 20 Hz and 45 kHz.

Solution:

Ω1 = 2 π (20) = 125.663 rad / sec.

Ω2 = 2 π (45 x 103) = 2.82743 x105 rad /sec.

Ωu = 2 π (20 x 103) = 1.25663 x 105 rad / sec.  

Ωl = 2 π (50) = 314.159 rad / sec

Calculate Ωr = min {│A│, │B│ } = min (│2.5053│, │2.2545│) = 2.2545 by using equations  

given in Table (2) . Apply eq. (8.4) to find:

n  2.829 3

From Table (1) of normalized Butterworth LPF ( Ωc =1 rad/ sec ) with n = 3:

1
3

S 3  2 S 2 2 S 1
H (S) 

S (   )S (1.25349105 )

S 2   S 2 3.94784107

ul

Apply LP → BP transformation by substituting S lu , in the

above equation and rearrange it to obtain HBPF (as H.W) 5
7



8.3 Chebyshev Filters:

There are two types of Chebyshev Filters:

1- One containing a ripple in the pass-band (type 1).  

2- One containing a ripple in the stop-band (type 2).

12 
n

nH ( j )
1  2 T 2 ( )

(8.6)

Tn(Ω) is the nth order Chebyshev polynomial where T0(x) =1, and T1(x) = x as listed in Table

 2 (3).is a parameter chosen to provide the proper pass-band ripple. Fig. (8.3) shows

normalized Chebyshev Filters of both types.

n oddn even

Fig.( 8.3) Normalized Chebyshev filters of type 1 for (n odd), and (n even)

8.3.1 Design Equations of Chebyshev Filters:






log[  1 ]
2

10rr

log[ g g 2  1 ] 
n  10 (8.7)

20 log10 [1/ A ] stop band attenuatio n (dB)
21/ 2

(8.8a)

]1/ 2g  [ ( A2 1 ) / 2
(8.8b)

n odd

n even

KK

nK

n
)V (S)

LPF
poles

K  Vn (0)  b0

K  Vn (0) /(1  
2

H (S ) 
(S  S

(8.9)

Table (4) gives Vn(S) for n =1 to n =10 and ε corresponding to 0.5, 1, 2, and 3 dB ripples.

Table (5) gives the zeros {poles of Hn(S) } for the same n and ε. 5
8



8.3.2 Design steps of Chebeshev LPF, HPF, BPF, and BSF :

1Use the backward design equations from Table (2) to obtain normalized LPF requirements 

(Ωr).

2Calculate A using eq. (8.8a)

3Calculate g from eq. (8.8b), then apply eq.(8.7) to find the order n.

4Use Table (4) and Table (5) to find the Chebeshev Filter equation with order n.

5Apply LP → LP or HP or BP or BS transformation (Table (2)) and rearrange the equation  

obtained in step 4.

Example (4): Design a Chebshev filter to satisfy the following specifications:  

1-Acceptable pass-band ripple of 2dB

2Cutoff frequency of 40 rad/sec.

3stop-band attenuation of 20 dB or more at 52 rad/sec.

Solution: From Table (2)

r  r / u = 52/ 40 = 1.3 rad/sec.

20 log10 [1/ A ]20 ,
21/ 2

A = 10, using ε = 2 dB = 0.76478 (see Table (4) and Table (5))

Applying eq. (8.8b), then g = 13.01

10



log[1.3 (1.3) 2  1 ]

log[13.01 (13.01)2  1 ]

n  10  4.3  5 , n odd

From Table (4) with n = 5 and ε = 2 dB = 0.76478

0.08172
5

S 5 0.70646S 4 1.499S 3  0.6934S 2  0.459349S  0.08172
H (S) 

Using poles from Table (5):

0.08172
5

(S  0.218303) (S 2  0.134922S  0.95215)(S 2 0.35323S  0.393115)
H (S) 

Using Table (2) and applying LP → LP transformation, S→ S / 40, and rearranging the above  

equation:

8.366106

H LPF (S) 
( S 8.73212) ( S 2  5.3969 S 1523.44) ( S 2 14.1292 S  628.984)

Notes:

1. Butterworth or maximally flat amplitude; as the order (n) is increased the response  

becomes flatter in the pass-band and the attenuation is greater in the stop-band.
5
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.2Chebshev Filter has a sharper cutoff; i.e., a narrower transition band ( best amplitude  

response) than a Butterworth filter of the same order (n)

.3Chebshev Filter provides poorest phase response (most nonlinear). The Butterworth filter

compromise between amplitude and phase ( this is one of the reasons for its widespread  

popularity).

8.4 Elliptic Filters:

A LP elliptic filter provides a smaller transition width and is optimum in the sense that no  

other filter of the same order has a narrower transition width for a given pass-band ripple and

stop-band attenuation.

Fig. 8.4(a) normalized elliptic LPFFig. 8.4(b) elliptic LP filters types

Fig. 8.4 (a) shows a normalized elliptic LPF and Fig. 8.4 (b) shows elliptic LP filters of  

type 1 (n odd), and type 2 (n even).

.1Design steps of Elliptic LPF, HPF, BPF, and BSF : using Table (6)

.1Locate k1= acceptable pass-band ripple (dB) , and k2 = stop-band attenuation (dB).

.2Calculate Ωr using Table(2), pp.55.

.3At Ωr column, take a value less than Ωr.

.4The filter order (n) is the far left of that row, and the coefficients for the filter are found  

in all rows corresponding to that (n).

.5According to (n), the normalized elliptic LPF equations are:

(n1) / 2


i1 oi1i

0i

o

n
S 2 BS  B

S 2  A

( S  S )

H
H (S) o

, n odd (8.10 a)
6
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n / 2

i1

0 i

n0 S 2  BS  B
1io i

S 2  A
H (S)  H (S)  , n even(8.10 b)

6- Apply LP → LP or HP or BP or BS transformation (Table (2)) and rearrange the equation  

obtained in step 5.

Notes:

For normalized elliptic filter, Ω0 = (Ω2 Ω1 ) 0.5 = 1 = geometric mean, and Ωr = Ω2 / Ω1

,then Ω1 = (Ωr ) − 0.5 , and Ω2 = (Ωr ) 0.5

0.5

210


For not normalized elliptic filter,   (


110220 ), where    /  and     / 

Then      /    /  .
r2121

n (elliptic) ≤ n (chebeshev) ≤ n (Butterworth)

Example (5) : Find the transfer function for an elliptic LPF with − 2 dB cutoff value at 10000  

rad/sec., and a stop-band attenuation of 40 dB for all Ω past 14400 rad/sec.

Solution:

  (  

)0.5 = {(14400) (10000)}0.5 = 12000

021

    /  = 10000/12000= 5/6 and     /  = 14400/12000 = 6/5
110220

    /    / 
r2121

= 1.44, k1= − 2 dB, and k2 = − 40 dB. From Table (6), n =4

Applying eq. (8.10 b), Where:

H0 = 0.01, A01 = 7.25202, B01 = 0.212344, and B11 = 0.467290,  

A02 = 1.57676, B02 = 0.677934, and B12 = 0.127954

i =1

i = 2

0.01( S 2  7.25202) (S 2 1.57676)
H 4 (S) 

(S 2  0.467290 S  0.212344) (S 2  0.127954S  0.677934)

Apply LP → LP transformation (Table (2)), where Ω0 = geometric mean = 12000. Substituting  

S → S / 12000 in the above equation:

0.01( S 2 1.04429109 ) (S 2  2.27053108 )
H LPF (S) 

(S 2  5607.48S  30577536) (S 2 1535.448S  97622497)

6
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Lec. 9Digital Filter Design

9.1 Introduction:

A discrete time filter takes a discrete time input sequence x(n) and produces a discrete  

time output sequence y(n).

A special class of a discrete time shift-invariant system can be characterized by a unit  

sample response h(n), a system function H(Z), or difference equation.

NM

ak y(nk) bk x(n

k)
k0k0

(9.1)

N

k

M

k

Z k

Z kb

 a
k0

H (Z)  k0
(9.2)

N

k

M

b e

a

 k

e j Wk

jW k

,Z  e j WH (e jW )  k 0

(9.3)

k0

A filter may be required to have a given frequency response, or specific response to an

impulse, step, or ramp, or simulate a continuous analog system. The simulation of analog filter is

shown in Fig. (9.1).

.1Definitions

.1If unit sample response h(n) is of finite duration, the system is said to be a finite impulse 

response (FIR) system. Eq. (9.1) represents FIR system if a0≠ 0 and ak = 0 for k=1, 2,..N.

xa(t) x(n) y(n) ya(t)

Equivalent analog filter

Fig. (9.1) Equivalent analog filter

A/D converter consists of sampler, quantizer, and coder.

D/A converter consists of decoder, sample and hold, and low-pass filter.

A/D converter  

(1/T) samples /  

sec.

Discrete  

time filter  

H(Z)

D/A converter  

(1/T) samples /  

sec.

6
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.2If unit sample response h(n) is of infinite duration, the system is said to be an infinite  

impulse response (IIR) system.

.3IIR filter is usually implemented by recursive realization (is one in which the present

value of the output depends on both the input present and or past values), i.e., with  

feedback.

.4FIR filter is usually implemented by either a nonrecursive realization (without feedback)  

or an FFT realization.

9.1.2 A comparison between FIR and IIR filters:

FIR IIR

1- Finite impulse response h(n)

n1 ≤ n ≤ n2

1- Infinite impulse response h(n)

n1 ≤ n ≤ ∞

2-Complex requires large number of

computations

2- Simple, does not require

large

number of computations

3- Due to large number of computations,

it requires large memory

3- Dose not require large memory

4- Always stable because its poles lie at

the origin

4- Stable only if its poles lie inside the

unit circle of the Z-plane

5- Linear phase characteristics 5- nonlinear phase characteristics

9.2 Infinite Impulse Response (IIR) filter format

An IIR filter is described using the difference equation (9.1) as:

(9.4)

The IIR filter transfer function given in eq.(9.2) as:

(9.5)

Example (1): Given the following IIR filter:  

y(n) = 0.2 x(n) + 0.4 x(n − 1) + 0.5 y(n − 1),

Determine the transfer function, nonzero coefficients, and impulse response.

Solution:

6
3



Using the inverse z-transform and shift theorem, we obtain the impulse response as

9.3 Techniques for designing H(Z) for IIR filter:

9.3.1 Design by using numerical solutions of differential equations:

A continuous time linear filter is specified by the following difference equation:

N M

kk
d tk

ada

d tkc
k0 k0

d k  y (t)d k x (t)
(9.6)

k

M

k

a

S kc

S kd

k0

k0

N
H (S)  (9.7)

Approximate the derivates using first backward differences:

(1) [y(n)]  [y(n)  y(n 1)] / T

are found by applying

(9.8)

the first backward differenceHigher order backward differences  

repeatedly, as follows:

(k ) [y(n)]  (1) [(k 1) [y(n)] ] (9.9)

Using the kth order differences as approximations to the derivatives given in eq. (9.6), we have:

NM

 ka ka

k0k0

(k)
(k ) [x (nT )]c [y (nT)]d (9.10)

(9.11)

The Z. Transform of the 1st and kth order differences are given below:

Z{(1) [y(n)] Y (Z) {1 Z 1}] / T

Z{ (k ) [y(n)]  Y (Z) [ {1 Z 1)} / T ]k (9.12)

Letting x(n) = xa(n T), and y(n) = ya(n T). Taking the Z. Transform of eq. (9.10):

NM

kk

k0k0

c Y (Z) [ {1 Z 1)} / T ]k dX (Z) [ {1 Z 1)} / T ]k

k

6
4

M

k

X (Z

)

Y(Z

)

k0

[ {1 Z 1)} / T ]k

 k 0H(Z)  N

c[ {1 Z 1)} / T ]k

d

(9.13)

Comparing eq. (9.7) and eq. (9.13), we find:



T

(1Z 1)
S

H (Z) Ha(S)
(9.14)

1

(S 1) (S  2)
H.W: If H (S) use the numerical solutions of differential equations to obtain

H(Z) for, a) T = 1 sec., and b) fs = 100 Hz.

9.3.2 Bilinear transformation (BLT) Design method:

Figure (9.2) illustrates a flow chart of the BLT design used

Fig. 9.2 General procedure for IIR filter design using bilinear transformation.

2 (1Z 1 )
S

T (1Z 1 )

H(Z)  Ha (S)
(9.15)

  
2  e j W / 2   e j W / 2   e j W / 2

j
T  e j W / 2    e j W / 2   e j W /

2

2 (1  e j W )j  
T (1 e j W )

2 (1  Z 1)
 S 

T (1  Z 1 )

(9.16)

, rad /sec 
2 

tan ( 
W

)
T2

(9.17)

2
W  2 tan 1 (

 T
), rad(9.18)

As (W/2) becomes smaller, we get more linear characteristics [ (W/2) << 1 ]. If the bilinear

transformation is applied to an Ha(S) with critical frequency Ωc, the digital filter will have critical

frequency Wc. 6
5



2
c W   2 tan 1 (

 c T )(9.19)

If the resulting H(Z) is used in an A/D-H(Z)-D/A structure, the equivalent critical frequency  

becomes:

Wcc eq T (9.20)

T2
ceq 

2 
tan 1 (

 c T )(9.21)

Which will give Ωc only if Ωc T / 2 is so small, that tan-1(Ω T / 2) ≈ Ω T / 2.

In bilinear transformation, the design of digital filter does not depend on the sampling

rate (T =1, prewarp case). For a low-pass filter, with S → S / Ωc , and applying eq. (9.17), then:

W
c (1 Z 1 ) tan()

2


2(1 Z 1 )(1 Z 1)S 

T (1  Z 1 ) 

Example (2): Design and realize a digital low-pass filter using bilinear transformation method to  

satisfy the following c/cs:

.1− 3.01 dB cutoff frequency of 0.5 π rad

.2Magnitude down at least 15 dB at 0.75 rad.

Solution:

Step (1): applying eq. (9.17), where T=1 (prewarp case)

2
  2 tan ( 

W1 )  2 tan(0.5  / 2) 2u

2

6
6

2  2 tan ( )  2 tan(0.75  / 2)  4.8282
W

r

Step (2) : applying eq. (8.4) and (8.5a):

 2 log10 ( 1 / r )

log1) / (100.1 k21)}{(10
 0.1 k1

n  10


2 log10 ( 2 / 4.8282)

{ (103.01/10



log1) / (1015 /10 1)}
n  10  1.9412  2



 c  2 / (10 1) 2rad
3.01/101 / 4



Referring to lecture 8, Table (1) to write the normalized Butterworth LPF equation, and then  

using LP → LP transformation:

14


S 2 2  S1S 2  2 2 S 4
H (S)  SS / 2a

Step (3): Applying bilinear transformation, eq.(9.15), T = 1

[ ]2    2 2 [] 4


3.4142135 0.5857865 Z 2

41 2 Z 1  Z 2

2(1 Z 1)

(1 Z 1)(1 Z 1)

2(1 Z 1)
H(Z) 

y(n) = 0.2928932 { x(n) + 2 x(n−1) + x(n−2) } − 0.1715729 y(n−2)

.3Digital-to digital transformation design method

.1Use digital specifications to calculate the order of digital unit bandwidth low-pass  

Butterworth prototype and corresponding critical frequency Wp. The order of the digital

filter can be obtained by using eq. (9.17) of the prewarped digital frequencies u , and

rin the standard formula for the analog Butterworth filter { eq. (8.4) }, as:

2.
 2 log10 { tan(W1 / 2 ) / tan(W2 / 2 )} 

n  
10


log1) / (100.1k2 1)}{ (10

 0.1k1

(9.22)

1

P1

1 / 2 n1 k /10 1)tan(W / 2)}W 2 tan{(10 (9.23)

Note: Refer to lecture 8, Table (2) to substitute for Ωr in eq. (9.22) in terms of eq.(9.17).

Table (1) Digital-to digital transformation

6
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sin{ ( P W1 ) / 2 }
3- From Table (1), calculate  

sin{ ( P  W1 ) / 2 }(9.24)

4- Table (2) gives HBn (Z) for normalized low-pass Butterworth digital filter. Calculate


Z1

H (Z )  H B n (Z )

(1  Z 1 )

(Z1  ) (9.25)

Example (3): Use Digital-to digital transformation method. Find H(Z) for LP digital filter that  

satisfies the following requirements:

1- A − 3.0102 dB cutoff digital frequency of 0.5 π rad.  

2- Attenuation at and past 0.75 π rad is at least 15 dB

Solution:

log{ (10 0.30102 1) / (101.5 1)}

2 log10 { tan(0.5 / 2 ) / tan( 0.75 / 2 )}
n  

10
  1.9412  2

P W 2 tan1 {(100.30102 1) 1 / 4 tan(0.5 / 2)}  0.5 , θP = 1 (normalized)

 
sin { (10.5 ) / 2 }

 0.293401993  
sin { ( 10.5 ) / 2 }

Using Table (2) that gives HBn (Z) for normalized low-pass Butterworth digital filter

0.144106 (1 Z 1)2

H B2 (Z ) 
1 0.677496 Z 1 0.253921Z 2

Applying eq.(9.25) , then:

(1 Z 1)2

H (Z) 
3.4142 0.5858 Z 2

9.3.4 Impulse invariant design method

If ha(t) represents the response of an analog filter to a unit impulse δ(t), then the unit

sample response of a discrete-time filter used in an A/D-H(Z)-D/A structure is selected to be the

sampled version of h(n).

t n T}H (Z ) Z { h(n) } Z { ha (t ) (9.26)

If an analog filter with system function Ha(S) is given, the corresponding impulse invariant  

design filter has

t n T}

6
8

H (Z ) Z { L1 H ( S )
a (9.27)

Example (4): Find H(Z) corresponding to the impulse invariant design using sampling rate of  

(1/T) samples / sec. for an analog filter Ha(S) specified as: Ha(S) = A / ( S + α )



Solution:

ha(t) = L -1 Ha(S) = A e – α t u(t)  

h(n) = ha(t) t = nT = A e – α nT u( nT)

AZ

Z  e T
H(Z)  Z {h(n)} 

A
a , S  jH ( j  )

(2 2 ) 1/2

jWjW AAe jW

 ,Z  eH(e) 
e j W   e T1 e  jW e T

jW ,   / THeq ( j)  H(e
Ae jT

) WT e jT e T

eq
,   / TH ( j ) 

A

{1 e T cos( T) } j e T sin( T)

A
eq ,   /TH( j  ) 

1 e 2 T  2e  T cos(T )

(a)represents α = 1, T = 0.1 , │Ha ( j Ω)│and│Heq(j Ω)│are very close.

(b)represents α = 1, T = 1 , │Ha ( j Ω)│and│Heq(j Ω)│are different.
6
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Good results using impulse invariant design are obtained when the time between samples is

selected small.

9.4 Pole-Zero Placement Method for Simple Infinite Impulse Response Filters Design

This section introduces a pole-zero placement method for a simple IIR filter design. Let

us first examine effects of the pole-zero placement on the magnitude response in the z-plane

shown in Fig .(9.3).

In the z-plane, when we place a pair of complex conjugate zeros at a given point on the

unit circle with an angle θ, we will have a numerator factor of (z − e j θ)(z − e−j θ) in the transfer

function. Its magnitude contribution to the frequency response at z = e jW is (e jW − e j θ)(e jW − e−j

θ). When W = θ, the magnitude will reach zero.

When a pair of complex conjugate poles are placed at a given point within the unit circle,

we have a denominator factor of (z − r e j θ)(z − r e−j θ), where r is the radius chosen to be less

than and close to 1 to place the poles inside the unit circle. The magnitude contribution to the

frequency response at W = θ will rise to a large magnitude, since the first factor (e j θ − r e j θ) = (1

− r ) e−j θ gives a small magnitude of 1 − r, which is the length between the pole and the unit

circle at the angle W = θ. Note that the magnitude of e−j θ is 1.

Therefore, we can reduce the magnitude response using zero placement, while we increase the

magnitude response using pole placement. Placing a combination of poles and zeros will result in

different frequency responses. such as lowpass, highpass, bandpass, and bandstop. It is easy to

compute filter coefficients for simple IIR filters. Practically, the pole-zero placement method has

good performance when the bandpass and bandstop filters have very narrow bandwidth

requirements and the lowpass and highpass filters have either very low cutoff frequencies close to

the DC or very high cutoff frequencies close to the folding frequency (the Nyquist limit).

Fig. (9.3) Effects of pole-zero placement on the magnitude response.

7
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9.4.1 Second-Order Bandpass Filter Design

Poles in a band-pass filter are complex conjugate, with the magnitude r controlling the  

bandwidth and the angle θ controlling the center frequency. The zeros are placed at z = 1,

corresponding to DC, and z = -1, corresponding to the folding frequency.

The poles will raise the magnitude response at the center frequency while the zeros will

cause zero gains at DC (zero frequency) and at the folding frequency. The following equations  

give the band-pass filter design formulas using pole-zero placement:

(9.28)

Where, K is a scale factor to adjust the band-pass filter to have a unit pass-band gain

Example (5): A second-order bandpass filter is required to satisfy the following specifications:

.1Sampling rate = 8,000 Hz

.2A 3 dB bandwidth: BW = 200 Hz

.3Narrow passband centered at f0 = 1,000 Hz

.4Zero gain at 0 Hz and 4,000 Hz.

Find the transfer function using the pole-zero placement method.

Solution: Applying eq.(9.28),

7
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9.4.2 Second-Order Bandstop (Notch) Filter Design

For this type of filter, the pole placement is the same as the bandpass filter. The zeros are  

placed on the unit circle with the same angles with respect to the poles. This will improve

passband performance. The magnitude and the angle of the complex conjugate poles determine  

the 3 dB bandwidth and the center frequency, respectively.

Design formulas for band-stop filters are given in the following equations:

(9.29)

Example (6): A second-order notch filter is required to satisfy the following specifications:

.1Sampling rate = 8,000 Hz

.2A 3 dB bandwidth: BW = 100 Hz

.3Narrow pass-band centered at f0 = 1,500 Hz:

Find the transfer function using the pole-zero placement approach.

Solution:

7
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9.4.3 First-Order Low-pass Filter Design

The first-order pole-zero placement can be operated in two cases. The first situation is  

when the cutoff frequency is less than fs /4. Then the pole-zero placement is shown in Fig. (9.4a).  

As shown in Fig.(9.4a), the pole z = α is placed in the real axis. The zero is placed at z = -

1 to ensure zero gain at the folding frequency (Nyquist limit). When the cutoff frequency is

above fs / 4, the pole-zero placement is adopted as shown in Fig.(9.4b).

Design formulas for lowpass filters using the pole-zero placement are given in the following  

equations:

(9.30)

Example (7): A first-order lowpass filter is required to satisfy the following specifications:

1. Sampling rate = 8,000 Hz

2 A 3 dB cutoff frequency: fc = 100 Hz

3. Zero gain at 4,000 Hz.

Find the transfer function using the pole-zero placement method.

Solution: Since the cutoff frequency of 100 Hz is much less than fs / 4 = 2,000 Hz, we determine  

the pole as:

Fig. (9.4a) Pole-zero placement for the

first-order lowpass filter with fc <fs/4.

7
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Fig.(9.4b) Pole-zero placement for the

first-order lowpass filter with fc >fs/4.



Which is above 0.9. Hence, we have a good approximation. The unit-gain scale factor is  

calculated by:

Note that we can also determine the unit-gain factor K by substituting Z = e j0 = 1 to the transfer

function H(Z) = (Z + 1) / (Z - α), then find a DC gain. Set the scale factor to be a reciprocal of

the DC gain. This can be easily done, that is,

9.4.4 First-Order High-pass Filter Design

Similar to the low-pass filter design, the pole-zero placements for first-order high-pass  

filters in two cases are shown in Figures (9.5a) and (9.5b).

Formulas for designing highpass filters using the pole-zero placement are listed in the following  

equations:

Fig.(9.5a) Pole-zero placement for the

first-order highpass filter with fc <fs/4.

7
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Fig.(9.5b) Pole-zero placement for the

first-order highpass filter with fc >fs/4.



(9.31)

Example (8): A first-order highpass filter is required to satisfy the following specifications:

.1Sampling rate = 8,000 Hz

.2A 3 dB cutoff frequency: fc = 3800 Hz

.3Zero gain at 0 Hz.

Find the transfer function using the pole-zero placement method.

Solution:

Since the cutoff frequency of 3,800 Hz is much larger than fs / 4 = 2,000 Hz, we determine the  

pole as:

Note that we can also determine the unit-gain scale factor K by substituting Z = e j180 = -1 into the

transfer function H(Z) = (Z -1) / (Z - α), finding a passband gain at the Nyquist limit fs/2 = 4,000

Hz. We then set the scale factor to be a reciprocal of the passband gain. That is,

9. 5 Application: Digital Audio Equalizer

For an audio application such as the CD player, the digital audio equalizer is used to

make the sound as one desires by changing filter gains for different audio frequency bands. Other

applications include adjusting the sound source to take room acoustics into account, removing

undesired noise, and boosting the desired signal in the specified pass-band. The simulation is

based on the consumer digital audio processor—such as a CD player—handling the 16-bit digital

samples with a sampling rate of 44.1 kHz and an audio signal bandwidth at 22.05 kHz. A block

diagram of the digital audio equalizer is depicted in Fig (9.6). 7
5



A seven-band audio equalizer is adopted for discussion. The center frequencies are listed

in Table (2). The 3 dB bandwidth for each band-pass filter is chosen to be 50% of the center

frequency. As shown in Fig (9.6), g0 through g6 are the digital gains for each band-pass filter

output and can be adjusted to make sound effects, while y0(n) through y6(n) are the digital

amplified bandpass filter outputs. Finally, the equalized signal is the sum of the amplified

bandpass filter outputs and itself. By changing the digital gains of the equalizer, many sound

effects can be produced. A IIR bandpass Butterworth filters are chosen for the audio equalizer.

The coefficients are achieved using the BLT method.

Fig. (9.6) Simplified block diagram of the audio equalizer.

Table (2) Specifications for an audio equalizer to be designed.

Fig. (9.7) Magnitude frequency responses for the audio equalizer. 7
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The audio test signal having frequency components of 100 Hz, 200 Hz, 400 Hz, 1,000  

Hz, 2,500 Hz, 6,000 Hz, and 15,000 Hz.

The gains set for the filter banks are: go  = 10; g1  = 10; g2  = 0; g3  = 0; g4  = 0; g5  = 10; g6 =

10. The frequency components at 100 Hz, 200 Hz, 6,000 Hz, and 15,000 Hz will be boosted by

20 log10 10 =20 dB. The top plot in Fig. (9.8), shows the spectrum for the audio test signal, while

the bottom plot depicts the spectrum for the equalized audio test signal. Before audio digital

equalization, the spectral peaks at all bands are at the same level; after audio digital equalization,

the frequency components at bank 0, bank 1, bank 5, and bank 6 are amplified. The operation of

the digital equalizer boosts the low frequency components and the high frequency components.

Fig. (9.8) Audio spectrum and equalized audio spectrum.
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1. Rectangular:




 otherwise
R 

0

0  n  N 1 
w (n) 

 1
(9.45)

2. Bartlett:























elsewhere

B

 0

(N 1)/ 2  n  (N 1)



(N  1)

0  n  (N 1)/ 2
 (N  1)

2n

w (n) 
 2  2n

(9.46)

3. Hanning:














elsewhere

wHan

0

0 n N1
(n) 

0.5 [1cos ( 
(N 1) 

) ],
2  n

(9.47)

4. Hamming:









elsewhere

Ham

0

0  n  N  
1),

(N 1)w(n) 



0.54  0.46 cos ( 
2  n

(9.48)

5. Blackman:




Bl

0

(N 1)

elsewhere

(N 1)w (n) 



0.42  0.5 cos ( 

2  n  
)  0.08 cos ( 

4 n 
),0  n  N  

1




(9.49)

An ideal LP filter with linear phase of slope −α and cutoff wc can be characterized in frequency  

domain by:







W W 

W W

c

c
e

jW 

jW

d
0

H   (e) (9.50)

Using inverse F.T ( eq. (4.11), PP. 28 ):

sin [ w (n   ) ]

7
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h (n)  c

 (n )
d (9.51)

(9.52)

For a causal FIR filter, and using :

h( n)  hd ( n) . w(n)

Substituting eq.(9.51) into eq.(9.52), yield:



h(n) 
sin [ wc (n ) ]

. w(n) (9.53)
 (n  )

For h(n) to be a linear phase filter, α = (N-1) / 2.  

Table (3) shows hd(n) for LPF, HPF, BPF, and BSF:

Table (3) hd(n) and hd(α ) for LPF, HPF, BPF, and BS

Filter Type hd(n) hd(α )

LPF h (n) 
sin [ wc (n   ) ]

d  (n )
hd(α ) = wc / π

HPF h (n)  
sin [ wc (n   ) ]

d  (n )
hd(α ) = 1 – (wc / π)

BPF

N 
2 k

, N   
2 k

1 w  w 2 w   w
l 1 2 u

N = max (N1 , N2 )

h (n) 
sin{wu (n)}sin{wl (n)}

d  (n)

hd(α ) = ( wu - wl ) / π

BSF

N 
2 k

, N   
2 k

1 w  w 2 w   w
1 l u 2

N = max (N1 , N2 )

h (n) 
sin{wl (n)}sin{wu (n)}

d  (n)

hd(α ) = (π − wu − wl ) / π

In general, for all the above filters with N odd:

h( n)  hd (n) . w(n)



7
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




) ]

22

(N3)/2

n0

jW ( 
N1

)
2

N1
)2 h(n) cos [ W (n

N1
H (e j W   )e{h(

Φ( W ) = − W α , with α = ( N− 1 ) /2

Notes:

The stop-band gain for the LPF designed is relatively insensitive to the size of the  

window and the selection of wc depending mainly on the type of window.

The transition width of the designed LPF is approximately equal to the main lobe of the  

window used. See Table (4)
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Table (4) Design table for FIR LPF

Window Transition Width (wt) Minimum stop-band attenuation

Rectangular 4 π / N − 21 dB

Bartlett 8 π / N − 25 dB

Hanning 8 π / N − 44 dB

Hamming 8 π / N − 53 dB

Blackman 12 π / N − 74 dB

.8Design procedure for an FIR filter

Requirements: k1, w1, k2, and w2 represents the cutoff and stop-band requirements for digital  

filters.

.1From Table (4), select the window type such that the stop-band gain exceeds k2

2Selects the number of points in the window,  

wt = w2 − w1 ≥ k (2 π / N ) ,

N is preferred odd N ≥ k (2 π ) / (w2 − w1 ),

.3Select α and wc , where :

wc = w1 , and α = ( N− 1 ) /2

.4Find h(n) from eq. (9.52) using the specified window type and Table (3) .

.5Use eq. (9.42) or eq.(9.43 ) to plot the frequency response H(ejW), and check to see if the  

given specifications are satisfied.

.6If the attenuation requirement at w1 is not satisfied, increase wc and return to step 4, and 5 .

.7If the frequency response requirements are satisfied, check to see if a further reduction of  

N might be possible. If a further reduction in N is not possible, then h(n) found is the  

desired design, otherwise, reduce N and return to step 3.

.8If the filter is to be used in A/D- H(Z) – D/A structure, the equivalent analog specifications

must be converted to digital specifications. For analog critical frequencies, Ωi , the  

corresponding digital specifications using a sampling rate of 1 / T samples /sec. ;

wi = Ωi T

Example (9): Design a LP digital filter to be used in A/D- H(Z) – D/A structure that will have a

− 3 dB cutoff of 30 π rad / sec. and an attenuation of 50 dB at 45 π rad/sec. The filter is required  

to have linear phase. The system will use a sampling rate of 100 samples/sec.



Solution:

wc = w1 = Ωu T = 30 π (1/100) = 0.3 π rad  

w2 = wr = Ωr T = 45 π (1/100) = 0.45 π rad

.1Hamming window is chosen.

.2From step (2):

(8 π / N ) = k (2 π / N ), Then k = 4

N ≥ 4 (2 π ) / (0.45 − 0.3 ) π = 53.3 =55

3.wc = wu = 0.3 π rad , and α = ( N− 1 ) /2 = 27

4. Using eq. (9.48) for wHam and the value of hd(n) from Table (3) to find h(n):

 (n  27)
h(n) 

sin [ 0.3 (n  27) ]
.{0.54  0.46 cos( 2 n / 54)} , 0  n  54

26

H (e j W ) e j W ( 27 ) {h (27) 2 h(n) cos [ W (n 27) ]
n0

From the results obtained from MATLAB program, the attenuation is seen to be too much at wc

= w1 . The design is improved by making wc = 0.33 rad / sec, then N = 29 , α = 14 and

 (n 14)
h(n) 

sin [ 0.33 (n 14) ]
.{0.54  0.46 cos( 2 n / 28)} , 0  n  28

13

H (e j W ) e j W (14 ) {h (14) 2 h(n) cos [ W (n 14) ]
n0

N= 55, wc = wu = 0.3 πrad N= 29, wc = wu = 0.33 π rad
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