Lec:1 Introduction to Digital Signal Processing

1.1 Basic C { Digital Sienal P :

Digital signal processing (DSP) technology and its advancements have dramatically
impacted our modern society everywhere. Without DSP, we would not have digital/Internet audio or
video; digital recording; CD, DVD, and MP3 players; digital cameras; digital and cellular
telephones; digital satellite and TV; or wire and wireless networks. Medical instruments would be
less efficient or unable to provide useful information for precise diagnoses if there were no digital
electrocardiography (ECG) analyzers or digital x-rays and medical image systems. We would also
live in many less efficient ways, since we would not be equipped with voice recognition systems,
speech synthesis systems, and image and video editing systems. Without DSP, scientists, engineers,
and technologists would have no powerful tools to analyze and visualize data and perform their

design, and so on.
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FIGURE 1.1 A digital signal processing scheme.

The concept of DSP is illustrated by the simplified block diagram in Fig. (1.1), which
consists of an analog filter, an analog-to-digital conversion (ADC) unit, a digital signal (DS)
processor, a digital-to-analog conversion (DAC) unit, and a reconstruction (anti-image) filter.

As shown in the diagram, the analog input signal, which is continuous in time and amplitude,
is generally encountered in our real life. Examples of such analog signals include current, voltage,
temperature, pressure, and light intensity.

Usually a transducer (sensor) is used to convert the non-electrical signal to the analog
electrical signal (voltage). This analog signal is fed to an analog filter, which is applied to limit the
frequency range of analog signals prior to the sampling process. The purpose of filtering is to
significantly attenuate aliasing distortion.

The band-limited signal at the output of the analog filter is then sampled and converted via

the ADC unit into the digital signal, which is discrete both in time and in amplitude.



The DS processor then accepts the digital signal and processes the digital data according to
DSP rules such as lowpass, highpass, and bandpass digital filtering, or other algorithms for different
applications. Notice that the DS processor unit is a special type of digital computer and can be a
general-purpose digital computer, a microprocessor, or an advanced microcontroller; furthermore,
DSP rules can be implemented using software in general.

With the DS processor and corresponding software, a processed digital output signal is
generated. This signal behaves in a manner according to the specific algorithm used

The DAC unit converts the processed digital signal to an analog output signal. The signal is
continuous in time and discrete in amplitude (usually a sample-and-hold signal). The final block in
Fig. (1.1) is designated as a function to smooth the DAC output voltage levels back to the analog

signal via a reconstruction (anti-image) filter for real-world applications.

1.2 Basic Digital Signal P .
1.2.1 Digital Filteri

Consider the situation shown in Fig. (1.2), of a digitized noisy signal containing a useful
low-frequency signal and noise that occupies all of the frequency range. After ADC, the digitized
noisy signal x(n), where n is the sample number, can be enhanced using digital filtering. Since our
useful signal contains the low-frequency component, the high frequency components above that of
our useful signal are considered as noise, which can be removed by using a digital lowpass filter.

After processing the digitized noisy signal x(n), the digital lowpass filter produces a clean
digital signal y(n). The cleaned signal y(n) is applied to another DSP algorithm for a different
application or convert it to the analog signal via DAC and the reconstruction filter.

The digitized noisy signal and clean digital signal, respectively, are plotted in Fig. (1.3),
where the top plot shows the digitized noisy signal, x(n), while the bottom plot demonstrates the

clean digital signal ,y(n), obtained by applying the digital lowpass filter.
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Digitized noisy input Digital filtering Clean digital signal

FIGURE 1.2 The simple digital filtering block.
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FIGURE 1.3 (Top) Digitized noisy signal. (Bottom) Clean digital signal using the digital
lowpass filter.

As shown in Figure 1.4, certain DSP applications often require that time domain information

and the frequency content of the signal be analyzed.
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Figure 1.5 shows a digitized audio signal and its calculated signal spectrum (frequency

content), defined as the signal amplitude versus its corresponding frequency. It is also called fast

Fourier transform (FFT).
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Figure 1.5 Audio signal and its spectrum



The plot in Figure 1.5 (a) is a time domain display of the recorded audio signal with
frequency of 1,000 Hz sampled at 16,000 samples per second, while the frequency content display
of plot (b) displays the calculated signal spectrum versus frequencies, in which the peak amplitude is
clearly located at 1,000 Hz.

As another practical example, we often perform spectral estimation of a digitally recorded
speech or audio (music) waveform using the FFT algorithm in order to investigate spectral
frequency details of speech information. Figure 1.6 shows a speech signal produced by a human in
the time domain and frequency content displays. The top plot shows the digital speech waveform
versus its digitized sample number, while the bottom plot shows the frequency content information
of speech for a range from 0 to 4,000 Hz. We can observe that there are about ten spectral peaks,
called speech formants, in the range between 0 and 1,500 Hz. Those identified speech formants can
be used for applications such as speech modeling, speech coding, and speech feature extraction for

speech synthesis and recognition,

1ot Speech data: We lost the golden chain.
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Figure 1.6 Speech sample and speech spectrum

1.3 Dieital Sienal P ine Applicati

The list below by no means covers all DSP applications. Many more areas are increasingly

being explored by engineers and scientists. Applications of DSP techniques will continue to have

profound impacts and improve our lives.
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Digital audio and speech: Digital audio coding such as CD players, digital crossover, digital
audio equalizers, digital stereo and surround sound, noise reduction systems, speech coding,
data compression and encryption, speech synthesis and speech recognition.

Digital telephone: Speech recognition, high-speed modems, echo cancellation, speech
synthesizers, DTMF (dual-tone multi frequency) generation and detection, answering

machines.

Automobile industry. Active noise control systems, active suspension systems, digital audio
and radio, digital controls.

Electronic communications. Cellular phones, digital telecommunications, wireless LAN
(local area networking), satellite communications.

Medical imaging equipment. ECG analyzers, cardiac monitoring, medical imaging and
image recognition, digital x-rays and image processing.

Multimedia: Internet phones, audio, and video; hard disk drive electronics; digital
pictures;

digital cameras; text-to-voice and voice-to-text technologies



Lec:2 Signal Sampling and Reconstruction

2.1 Sampline of Conti Sienal

Figure 2.1 shows an analog (continuous-time) signal (solid line) defined at every point over

the time axis and amplitude axis. Hence, the analog signal contains an infinite number of points.

Signal samples
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Figure 2.1 Display of the analog (continuous) signal and display of digital samples versus the
sampling time instants.

It is impossible to digitize an infinite number of points. Furthermore, the infinite points are
not appropriate to be processed by the digital signal (DS) processor or computer, since they require
an infinite amount of memory and infinite amount of processing power for computations. Sampling

can solve such a problem by taking samples at the fixed time interval, as shown in Figure 2.1 and

Figure 2.2, where the time T represents the sampling interval or sampling period in seconds.
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Figure 2.2 Sample-and-hold analog voltage for ADC.

As shown in Figure 2.2, each sample maintains its voltage level during the sampling interval

T to give the ADC enough time to convert it. This process is called sample and hold.



For a given sampling interval T, which is defined as the time span between two sample
points, the sampling rate is therefore given by:
1
f; 7 2.1 Samples per second (Hz)
s
After the analog signal is sampled, we obtain the sampled signal whose amplitude values are
taken at the sampling instants, thus the processor is able to handle the sample points. Next, we have

to ensure that samples are collected at a rate high enough that the original analog signal can be

reconstructed or recovered later.

In other words, we are looking for a minimum sampling rate to acquire a complete
reconstruction of the analog signal from its sampled version.

If an analog signal is not appropriately sampled, aliasing will occur, which causes unwanted
signals in the desired frequency band.

The sampling theorem guarantees that an analog signal can be in theory perfectlyrecovered

as long as the sampling rate is at least twice as large as the highest-frequency component of the
analog signal to be sampled. The condition is described as:

fs > 2 finax (2.2)

Where, fmaxis the maximum-frequency component of the analog signal to be sampled. For
example, to sample a speech signal containing frequencies up to 4 kHz, the minimum sampling rate
is chosen to be at least 8 kHz, or 8,000 samples per second; to sample an audio signal possessing
frequencies up to 20 kHz, at least 40,000 samples per second, or 40 kHz, of the audio signal are
required.

Figure 2.3 depicts the sampled signal xs(t) obtained by sampling the continuous signal x(t) at

a sampling rate of fs samples per second.
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Figure 2.3 The simplified sampling process

Mathematically, this process can be written as the product of the continuous signal and the

sampling pulses (pulse train):

xs(t) = x(t) p(t) (2.3)
Where, p(t) is the pulse train with a period T = 1/ f.

From the spectral analysis shown in Fig. 2.4, it is clear that the sampled signal spectrum
consists of the scaled baseband spectrum centered at the origin and its replicas centered at the
frequencies of £ nfs (multiples of the sampling rate) for each of n = 1,2,3, . . . .In Figure 2.4, three
possible sketches are classified. Given the original signal spectrum X(f) plotted in Figure 2.4(a), the
sampled signal spectrum is plotted in Figure 2.4(b), where, the replicas have separations between
them. In Fig. 2.4(c), the baseband spectrum and its replicas are just connected. In Fig. 2.4(d), the
original spectrum and its replicas are overlapped; that is, there are many overlapping portions in the
sampled signal spectrum.

If applying a lowpass reconstruction filter to obtain exact reconstruction of the original signal
spectrum, equation (2.2) must be satisfied. This fundamental conclusion is well known as the
Shannon sampling theorem, which is formally described below:

For a uniformly sampled DSP system, an analog signal can be perfectly recovered as long as
the sampling rate is at least twice as large as the highest-fiequency component of the analog

signal to be sampled.

We summarize two key points here.

1. Sampling theorem establishes a minimum sampling rate for a given bandlimited analog
signal with the highest-frequency component fmax. If the sampling rate satisfies equation
(2.2), then the analog signal can be recovered via its sampled values using the lowpass filter,

as described in Fig. 2.4(b).

2. Half of the sampling frequency (fs / 2) is usually called the Nyquist frequency (Nyquist
limit), or folding frequency. The sampling theorem indicates that a DSP system with a
sampling rate of fscan ideally sample an analog signal with its highest frequency up to half

of the sampling rate without introducing spectral overlap (aliasing). Hence, the analog signal



can be perfectly recovered from its sampled version as described in Fig. 2.4 (¢). Fig. 2.4(d)

shows aliasing.
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Fig. 2.4 plots of the sampled signal spectrum.

Example(1)

Suppose that an analog signal is given as
x(1) = Scos (27 - 1000¢), for ¢ =0
and is sampled at the rate of 8,000 Hz.
Sketch the spectrum for the original signal. .a
Sketch the spectrum for the sampled signal from 0 to 20 kHz. .b
Solution:

S 2 1000y e j 2= 1000

Scos(2m = 1000f) =5 - ( 5 ) — 2.5/2x10000 5 5,~2mx 1000

The two-sided spectrum is plotted as shown in Fig. 2.5 (a). After the analog signal is sampled at the
rate of 8,000 Hz, the sampled signal spectrum and its replicas centered at the frequencies * nfs, each

with the scaled amplitude being 2.5/T, are as shown in Fig. 2.5(b)
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Fig. 2.5 (a) Fig. 2.5(b)
Notice that the spectrum of the sampled signal shown in Figure 2.5(b) contains the images of
the original spectrum shown in Figure 2.5(a); that the images repeat at multiples of the sampling
frequency fs (for our example, 8 kHz, 16 kHz, 24 kHz, . . . ); and that all images must be removed,

since they convey no additional information.

2.2 Sional R .
Two simplified steps are involved, as described in Figure 2.6. First, the digitally processed
data y(n) are converted to the ideal impulse train ys(t), in which each impulse has its amplitude
proportional to digital output y(n), and two consecutive impulses are separated by a sampling period
of T; second, the analog reconstruction filter is applied to the ideally recovered sampled signal ys(t)
to obtain the recovered analog signal.
The following three cases are listed for recovery of the original signal spectrum:
Case 1: f, = 2f ... Nyquist frequency is equal to the maximum frequency of the analog signal
x(t), an ideal lowpass reconstruction filter is required to recover the analog signal spectrum. This is

an impractical case.

Case 2t f > 2f ... In this case, there is a separation between the highest-frequency edge of the
baseband spectrum and the lower edge of the first replica. Therefore, a practical lowpass
reconstruction (anti-image) filter can be designed to reject all the images and achieve the original
signal spectrum.

Case 3: f. < 2f.... This is aliasing, where the recovered baseband spectrum suffers spectral
distortion, that is, contains an aliasing noise spectrum; in time domain, the recovered analog signal
may consist of the aliasing noise frequency or frequencies. Hence, the recovered analog signal is

incurably distorted.

—
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Fig. 2.6 Signal notations at reconstruction stage.

Example)

Assuming that an analog signal is given by

() = Scos (2w - 20000) + 3cos (27 - 30000, for ¢ =0

and it is sampled at the rate of 8,000 Hz,
a. Sketch the spectrum of the sampled signal up to 20 kHz.
b. Sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff

frequency of 4 kHz is used to filter the sampled signal (y(n) = x(n) in this case) to recover

the original signal.

Solution: Using Euler’s identity, we get

j2r 30000 iﬁ, 1272000 iﬁ;z»znm; I Ef,rlr-.?l'.lﬂﬂr
7 2 bl '

3
xir) = ¢

The two-sided amplitude spectrum for the sinusoids is displayed in Figure 2.7 (a). The recovered
spectrum is shown in Fig. 2.7 (b)
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223 Aliasi ise level

Given the DSP system shown in Fig. (2.8), where we can find the percentage of the aliasing

noise level using the symmetry of the Butterworth magnitude finction and its first replica. Then:-

R Digital value
Anti-aliasing | Sample and .| ADC
LP filter i hiold "l coding
Fig. 2.8 DSP system with anti-aliasing filter
J P f
(4 a
< f<L
O<f<f (2.4)

Aliasing noise level % = ) 5 ’fi - {_S
£,

Where, n is the filter order, £,1s the aliasing frequency, £ is the cutoff frequency, and £ isthe

sampling frequency.

Example (3)

In a DSP system with anti-aliasing filter, if a sampling rate of 8,000 Hz is used and the anti-
aliasing filter is a second-order Butterworth lowpass filter with a cutoft frequency of 3.4 kHz,
a. Determine the percentage of aliasing level at the cutoff frequency.

b. Determine the percentage of aliasing level at the frequency of 1,000 Hz.

N =



Solution:
[y = 8000, f. = 3400, and n = 2.

a. Since f, = f. = 3400 Hz, we compute

[1+ (3% 1 4142
aliasing noise level % = E_____{ifj__j__ = ”‘{}8 ;; = 67.8%.
i+ 2

b. With f, = 1000 Hz, we have

aliasing noise level % = L — =% — 55 = 23.05%.



3.1 Digital Sienal
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Fig. (3.1) Some digital signals

312G ion of Disital Sienal

To develop the digital sequence from its analog signal function is by applying:

3.1 Xn) = x(1)|,_,7 = x(nT).

Example(1): assuming a DSP system with a sampling time interval of 125 microseconds,
Convert each of the following analog signals x(t) to the digital signal x(n).
1. x(f) = 10e %1
2. x(r) = 10sin (20007 1)e(r)
Solution:
I. x(n) = x(nT) = 10 30000001250, Ty — (e 023 (n).

2. xin) = x(nT) = 10sin (20007 = 0.000125n0nT) = 10sin(0.257n)un).



3.3 Power Signals:

Periodic signals are power signals because their energy per cycle is finite.

[ pOWGlﬁ? Al d=YC | =e(o) (3.2)
Where:
c, =~ [ fyemiad
n —7L (D e t , Wo=2 T fo (3.3)
fo=3c, e (34)
(p(r):lTjOT £() F(t+7)dt (3.5)
3.4 Energy Signals:

Non-periodic signals are called an energy signals because their power — 0
0 1 00
energy=[|  df=f(» 5 [ | Fowp2aw= i) (3.6)

Where:
FW=[ o e™dt 6.7)

f(fiof(ti ) did(7) = (3.8)

1.5 Classificati (s
3.5.1 Linear System

Figure 3.2 illustrates that the system output due to the weighted sum inputs a xi(n) £ 3

x2(n) is equal to the same weighted sum of the individual outputs obtained from their

corresponding inputs, that is, y(n) = a yi(n) £ B y2(n), where a and 3 are constants. Here, the

principle of "superposition" is applied.
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Fig. (3.2) Digital linear system
3.5.2 Time-I iant S
A time-invariant system is illustrated in Figure 3.3. If the system is time invariant and

yi(n) is the system output due to the input xi(n), then the shifted system input xi(n — no) will

produce a shifted system output yi(n — no).

Xl ¥l
JLLLL” ,
System ——
xa{) = Xy (= ) Yelm=J3(n—ny)
L _THT. )
gy Shifted by ny samplas g Shifted by ng samples

Fig. 3.3 Illustration of linear time-invariant system

Example 2: Given the linear systems:

a.y(n) =2x(n—15)

b. y(n) = 2x(3n),

Determine whether each of the following systems is time invariant.

Solution:
Let the input and output be xi(n) and yi(n), respectively; then the system output is yi(n) = (a

2x1(n — 5). Again, let x2(n) = x1(n — no) be the shifted input and y2(n) be the output due to the
shifted input. We determine the system output using the shifted input as

y2(n) = 2x2(n —5) = 2x1(n —no—5):
Meanwhile, shifting yi(n) = 2x1(n — 5) by no samples leads to

yi(n —no) = 2x1(n — 5 — no)

We can verify that y2(n) = y1(n — ng). Thus the shifted input of no samples causes the

system output to be shifted by the same no samples, thus the system is &ime invariant.

Let the input and output be x1(n) and yi(n), respectively; then the system output is yi(n) (b
=2x1(3n). Again, let the input and output be x2(n) and y2(n), where x2(n) = x1(n — no), a shifted
version, and the corresponding output is y2(n). We get the output due to the shifted input

x2(n) = x1(n — no) and note that x2(3n) = x1(3n — no):

y2(n) = 2x2(3n) = 2x1(3n — no):

On the other hand, if we shift yi1(n) by no samples, which replaces n in

—_



yi(n) = 2x1(3n) by n — ny, it yield

yi(n — no) = 2x1(3(n — no)) = 2x1(3n — 3no):

Clearly, we know that y2(n) # y1(n — no). Since the system output y2(n) using the input shifted by
no samples is not equal to the system output yi(n) shifted by the same no samples, the system is

not time invariant.

3.5.3 Causal System:

A causal system is one in which the output y(n) at time n depends only on the current
input x(n) at time n, its past input sample values such as x(n — 1), x(n— 2), . . . : Otherwise, if a
system output depends on the future input values, such as x(n + 1), x(n + 2), . . . , the system is
noncausal. The noncausal system cannot be realized in real time.
Example 3: Given the following linear systems,

a. y(n) = 0.5x(n) + 2.5x(n — 2), forn >0

b. y(n) =0.25x(n— 1) + 0.5x(n + 1) — 0.4y(n — 1), for n > 0,
Determine whether each is causal.
Solution:
Since for n > 0, the output y(n) depends on the current input x(n) and its past value x(n — 2), (a

the system is causal.

Since for n > 0, the output y(n) depends on the current input x(n) and its future value x(n + 2), (b

the system is noncausal.

1.5.4, Stabilitv:
A stable system is one for which every bounded input produces a bounded output

(BIBO). The system is stable, if its transfer function vanishes after a sufficiently long time. For a
stable system:
S=| ik | (3.9) (oo
k= -0

Where A(k)= unit impulse response

1.6 Diffi E . 11 Ise R
A causal, linear, time-invariant system can be described by a difference equation having

the following general form:

wn)+ampln — 1)+ ... +ayy(n — N)

Bpxin) +bxin — 1)+ ..o+ bagxin — M), (3.10)

—_



Where ai, . . ., avand bo, by, . . ., bmare the coefficients of the difference equation. Equation
(3.10) can further be written as:
yin)=—ayyn—1)— ... —ayyn— N)
+ byxin) + bxin — 1) 4.+ byex(n — M)

N

M
yn) = — Z avin — 1) + Z bix(n —j).

= a (3.11)
Notice that y(n) is the current output, which depends on the past output samples y(n — 1),
., y(n — N), the current input sample x(n), and the past input samples, x(n—1), . . ., x(n — M).

Example4: Given a linear system described by the difference equation
y(n) = x(n) + 0.5x(n — 1), Determine the nonzero system coefficients.

Solution: a. By comparing Equation (3.11), we have, bo= 1, and b1 =0.5

3178 R ion Usine Its I Ise R
A linear time-invariant system can be completely described by its unit-impulse response,

which is defined as the system response due to the impulse input d(n) with zero initial

and y(n) = h(n).conditions, depicted in Figure 3.3. Here x(n) = 6(n)

x¥(n) win
—» hin) —o»n

Fig. 3.4 Representation of a linear time-invariant system using the impulse response.

Example S: Given the linear time-invariant system
y(n) = 0.5x(n) + 0.25x(n — 1) with an initial condition x(—1) =0
Determine the unit-impulse response h(n). .a
Draw the system block diagram. .b
Write the output using the obtained impulse response. .c
Solution:
a. h(n) = 0.5 6(n) + 0.25 6(n — 1) , where h(0)= 0.5, h(1) = 0.25 and h(n) = 0 elsewhere.
b.

x(n) yin)
—+| hin=0.58(n) +0.258(n-1) —

—_



c. y(n) =h(0) x(n) + h(1) x(n—1)
From this result, it is noted that if the difference equation without the past output terms, y(n — 1),
., y(n — N), that is, the corresponding coefficients ai, . . . , an, are zeros, the impulse response
h(n) has a finite number of terms. We call this a finite impulse response (FIR) system.
In general, we can express the output sequence of a linear time-invariant system from its
impulse response and inputs as:
(3.12) y(n)=....+h(=1) x(n+1)+h(0) x(n) + h(1) x(n—1) + h(2) x(n—2) +. . . ..

Equation (3.12) is called the digital convolution sum.

Example 6: Given the difference equation

y(m)=0.25 y(n— 1) + x(n) forn > 0 and y(-1) = 0,
Determine the unit-impulse response h(n). .a
Draw the system block diagram. .b

Write the output using the obtained impulse response. .c

For a step input x(n) = u(n), verify and compare the output responses for the first three output .d

samples using the difference equation and digital convolution sum (Equation 3.12).

Solution:

a. Let x(n) = 8(n), then h(n) = 0.25 h(n — 1) + 6(n)

To solve for h(n), we evaluate
h(0)=0.25h(-1)+56(0)=025(0)+1=1
h(1)=0.25h(0)+8(1)=0.25(1)+0=0.25
h(2) =0.25 h(1) + 8(2) = 0.25 (0.5 ) + 0 =0.0625

With the calculated results, we can predict the impulse response as:
h(n) =(0.25)"u(n) =86 (n) +0.256 (n— 1)+ 0.06256 (n—2) +... .....

b. The system block diagram is given below

o yin)
—* hin)=g(n)+0.258(n-1)+- —*

c. The output sequence is a sum of infinite terms expressed as
y(n) =h(0) x(n) + h(1) x(n— 1) + h2)x(n—2) +. ..
=x(n) + 0.25x(n — 1) + 0.0625x(n —2) +. ..

—_



d. From the difference equation and using the zero-initial condition, we have

vin) =025vin— 1)+ xin)forn=0and y( — 1)=0
n=0,90) =025 — 1)+ x(0) = u(0) = 1

n=1,19(1) = 0.2510) + (1) = 0.25 x u(0) + u(1) = 1.25
n=292)=0250(1) + x2) =025 = 1.25 + u(2) = 1.3125

Applying the convolution sum in Equation (3.12) yields:
vin) = xin) + 0.25x(n — 1)+ 0.0625x(n — 2) + ...
n=~0, 0)=x(0) + 0255 — 1)+ 0.0625: — 2) + ...
=u(0)+025 % — 1)+ 0125 xu( - 2)+... =1

n=1, vil)=x(1)+025x0) + 0.0625x( — 1)+ ...
=u(l)+ 025 = w(0) 4+ 0125 w{ — 1)+ ... =125

n =2, ¥(2) = x(2) + 0.25x(1) + 0.0625x(0) + . ..
= w(2) + 025 % w(1) + 0.0625 % w(0) + ... = 1.3125

Notice that this impulse response h(n) contains an infinite number of terms in its duration due to
the past output term y(n — 1). Such a system as described in the preceding example is called an

infinite impulse response (IIR) system.

1.8 Digital C luti
yin) = i Ik )xin— k)

k=—co (3.13)
vin) = i xikln — k)

k=—=on

N =Nj+ Nz2-1. Where N1 = number of samples of x(n), N> = number of samples of h(n), and N =

total number of samples.

3.8.1 Graphical method:
hik) xik)
3 3
2 2
1 1
T [ —k b 1 ——t—k
-1 0 1 2 3 -1 0 1 2 3

Example7: Find y(n) = x(n) ® A(n) usinggraphical method
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2 Table lookup meth

y(0)=9 3 > .
y(1)=9 3 9 6 3
y(2)=11 1 3 2 1
y3)=5 6 4 2
y(4)=2
3.8.3 Matrix by Vector method

x(n)=[0.50.50.5], andExample7: If  hn)=[32 1]

0(0.5 [x0)] 157 0]

ool " Tasfy

|
05| 0505 | i|—|3|l—|y(2)|

|ﬂ 05 05! 115 1] m)’
[0 05]0 losl] @]

318.4 Li luti 1 circul luti

Linear convolution:
x(0) ®x,(n)=) x(1- k) x,(k) = %k x,(1— k) (3.14)
Circular
convolution: N-1 N-1
mod N) x,(K) =D x(K) x,((n—K) mod N)x (1) ®y % ()= X, x((n-K) (3.15)
k=0 k=0

If both x1(n) and x2(n) are of finite length N1 and N2 and defined on [ 0 Ni—1 ], and [0
N2—1 ] respectively, the value of N needed so that circular and linear convolution are the same

on[0ON-1]is:N>N; +N>—1

Example 8: I[fx(n)=[1232],and h(n)=[ 1 1 2]. Find y(n) such that linear and circular
convolution are the same.

Solution:

N=4+3-1=6

Thenx(n)=[123200]andh(n)=[11200 0]



x(n) is arranged in clockwise direction (italic numbers),while h(n) is arranged in the opposite
clockwise direction (bold numbers). Each time, only h(n) will be shifted with the clockwise
direction to find y(n). Note: the reference point is * and, the arrows represent multiplication

process. Finally, addition process is performed.

2 |pl g1+ 0 [m2 [m1* 0] o2
10 Io 1* lo Io 1% 0ol o] 17
2 g’ m? 2 |03 |02 21 3] 2
| 0| O [ | Ol Ol K 0 1| 1
y0)=1(1)=1 y(D)=1(1) +2(1) =3 y(2)=2(1)+2(1)+3(1)=7
0 [ oo 1[0 o 1 [ 1]ox
0] ol 1* ol o] 17 o o] 17
21 3] 2 21 3] 2 21 3] 2
1|1 ]2 1210 2/ 0] o0
y(3)=2(2)+3(1)+2(1)=9 y(4)=3(2)+2(1)=8 y(5)=2(2)=4
Using table lookup method:
1 1 2
y(0)=1
1 1 1 2
y(1)=3
’ ’ ’ Yo=7
’ ’ ; Y69
2 . 2 Ya=3
y(5)=4

Example(9): Use graphical method to find circular convolution x,(n) ® , x,(n) , if N =4, xi1(n)=
[1220]and x2(n)=[0123]
Solution: Applying eq. (3.15), then
3
) (n—k)ymod4y(m)=). x(k) x(
k=0

) (cHmoddy0)= x (k) x(

y(0) =x1(0) x2(-0 ® 4) + x1(1) x2(-1 ® 4) + x1(2) Xx2(-2 ® 4) + x1(3) x2(-3 @ 4)

o = mod addition

W N



y(0) = x1(0) x2(0) + x1(1) x2(3) + x1(2) x2(2) + x1(3) x2(1) = 1(0) + 2(3) + 2(2) + 0 (1) = 10

And so on

x1(k)

lAL]Ls
012 3 k

x2((1-k) mod 4)

Pl

x2(-k) x2((Q-k) mod 4)

3 2 -1 0 k
x2((2-k) mod 4)

2

231 0 k

v

1

Deconvolution: .9
Iterative approach .1

Using equation (3.14) and assuming causal system (started at k =0), then:

then x(0) = y(0) / h(0)y(0) = x(0) h(0),
y(1) =h(1) x(0) + h(0) x(1) , then x(1) = (y(1) — h(1) x(0) ) / h(0)
Polynomial Approach: .2

A long division process is applied between two polynomials. For causal system, the remainder is

always zero.

Ify(n)=[1210 14 6] and h(n)=[42 ]
Theny =12+ 10 x+ 14 x°+ 6 x?, and h =4 + 2 x. Applying long division, we
Thenx(n)=[313 ] obtain i/p=3 +x +3 x°.
Graphical method .3
(4 12] b x| 4 12—|b(g X 12 ] (4 ?3 x 12]
|2 10| (2 1o|311 <1 2 1003 >
[ 14| | |14||3 x 1o 14] 141 x 1
R T B B TR
4bo= 4b1+23)=10 4b2+2(1)+0(3)=14 4 b3+6+0+0 =6
bo=3 b= b2=3 b3=0

So,x(m)=[3 1 3]



Lec. 9 —Part 2
9.6 Finite L Ise R (FIR) fil
In many cases a linear phase c/cs is required throughout the pass-band of the filter to
preserve the shape of a given signal within the pass-band. Assume a LP filter with:
(e /W | W<w, ]
< L (9.32)

H(e'")=40 J{V<i|‘1/
for all other W perlbdif
Y(eV)=X(eV).HeWV)=XeW).e 1Wa (9.33 a)
Y(Z)=X(Z).Z (9.33b)
ym)=x(n-a) (9.34)

The linear phase filter did not alter the shape of the original signal, simply translated it by an

amount o, as shown in Fig. (9.9)

1
{5 & T
4 — A ; 5 ol i 'l
| Y, —_ v |
— o | — e | e ) S W
N = 5 + . - -
F - - - | A - - L]
:: TPUPLL U8 |
§o 0 | o
S v .
i o
y - e | i
\_,l ! i ¥
—— - = + — + =P g
| i
1 : A
L.
- - 1 | i

Fig.(9.9) The effect of (a) linear phase and (b) nonlinear phase c/cs on steady state outputs

with identical magnitude frequency response curves

A causal IR filter can not produce a linear phase c/cs and that only special forms of FIR filters
can give linear phase.
The necessary conditions for linear phase:

1. h(n) have finite duration ( for causal FIR filter, h(n) begins at zero and ends at N-1)

[o IR
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,n=0,1,....,N-1h(n) = h( N-1-n) (9.35)
2. Symmetric about its mid-point ( see Fig. (9.10) )

il
+ N ol § frin

\oeven

*.]LLLLLU L T‘LLT‘I;‘“-" “Pr_n: *..hﬁf__lzﬂ

i ¥
V|

\ |

Fig. (9.10) General shapes of h(n) that give linear phase for odd and even N.

If h(n) is as given in the above conditions, we now show that H(e'V) hag linear phase. For N

H(e™)=Y Hn)e

cven:
N-1 0
H(e™)=) Hn) /"= Kn)e’™  (Finite duration) (9.36)
=0 =-©
N1 (NI2)-1 ‘ ‘
]{(e] W) :ZN{Z(H) e’/ Wn:;](H) e’/ :]ﬂgl W) +[{(elj W) (9.37)
Letm = N-1-n
. | iz |
HEe™M= Y HN-1-m) e/ "M m=R g e/ M 9.38)
e ?N) ] =0
s I
-'.H(ef'W)=ZHF€(n) ef'W"=;i(m) e/ Mactm 9.39)
0L Sk [ e N—l—n—]\’z—‘lﬂZ
f‘ et (9.40)

J

N
O-12 N

H(e'™)=) 2 Kn) e [ )b %COS%&( }— (9.41)

O



For N even:

H(e'")=e e 2211(11)[ W(H—%)]} (9.42)

L

Linear phase magnitude
For N odd:
(N=3)/2 N_l
{A( H(é" V%) e— 21(11)%6[)?[ W) +——) ]} (9.43)
o 2

For N odd, the slope of — a = — (N—1) /2 causes a delay in the output of (N—1)/2 , which is an
integer number of samples, whereas for N even, the slope causes a non-integer delay. The non-

integer delay will cause the values of the sequence to be changed, which, in some cases, may be

undesirable.

9.7 Desi f FIR fil ine Wind
If hd(n) represents the impulse response of a desired IIR filter, then an FIR filter with
impulse response h(n) can be obtained as follows:
h(n) = hy(n). w(n)
hy(n) N, <n< Nzl

n)=
Kn) L 0 otherwise J
N<n<N 9.44
w(n) = £ L}) t]11 ) 2} , window function ©49)
otherwise
SIIE PR LCR LAt G
2 _,
‘r Hy(elw) Wiel=) Hiel*)
T Ly ‘_""Ill_- m - -m — g ;:f: 'w
. 4
N N

Fig. (9.11) Frequency response obtained by rectangularly windowing ideal LP impulse

response.

S 0



As shown in Fig.(9.11), the convolution produces a smeared version of ideal LP frequency
response Ha( ¢V). In general, the wider the main lobe of W( ¢WV), the more spreading, whereas
the narrower the main lobe ( larger N), the closer | H( e/V) | comes to | Ha( &™) |.

Some of the most commonly used windows are:



Lec. 5

5.1 Definition of Z.T

The z-transform is a very important tool in describing and analyzing digital systems. It

Z. - Transform

also offers the techniques for digital filter design and frequency analysis of digital signals.

The z-transform of a causalsequence x(n), designated by X(z) or Z(x(n)), is defined as:

X(z)

)

= Z(x(n)) = Z_t[n}:_"

n=l

= _'-.'lﬁ}l:_‘D + .\'[1}:_] + _'-;{2}:_2 +...

(5.1)

Where, z is the complex variable. Here, the summation taken from n = 0 to n = o is according to

the fact that for most situations, the digital signal x(n) is the causal sequence, that is, x(n) = 0 for

n < 0. For non-causal system, the summation starts at n = -co. Thus, the definition in Equation

(5.1) is referred to as a one-sided z-transform or a unilateral transform. The region of

convergence is defined based on the particular sequence x(n) being applied. The z-transforms for

common sequences are summarized below:

Region of

Line Mo, xir), n=10 Transform Xiz) Convergence
1 xlH) i xlmz "
2 Sir) I;=ﬂ s =0
3 aul ) % lz| =1
4 md 1) o _: 7 lz| =1
5 n2uin) i:_*] 1': 2| =1
£ auin) :i - lz| = |al
7 e " in) G —:4.'_",'! lz| = ™
& gl n) a faf l2 = |al
9 sin(anuin) __zsin(a) EES
= — 2zeos(a) + 1
10 Ccos (an )l 1) ~ il:::\_:;:i:}i ] |zl =1
11 a®sin (b n) - [il::%[ff:ﬁ: e lz| = |al
12 acos (brjun) = _il;::l;"-'[;jﬁf — |z] = |al
13 e gin | el n) = ['_"E:JL‘:: [[E;PJJ:: 4 g 2a |z] = ™
14 e eos (brjul n) = —:l!—;:-'__'" i;:\[_;::;b_{l_] po. l2] = e™
15 214||PI" cos(nb + duln) Az A%z

where Pand A are
complex constants

defined by P = |P|/8.A = |A|/¢

z_ P z_ p

S W



Example(1): Find Z.T including region of convergence of x(n) =-b"u(-n-1)

Solution: the system is non- causal

X2 :_Z—bu(—n—l)Z‘”:—wZ:(b/ 2y InZ {

betm=-n Lo R
X2 =--Sziy=1-Sziye | T
m=0 m=1
BYUSingzX’”=1+X+X2+)P+....=—11 Jaf(1
m=0 X—
X(2)=1 < 1,_7,<b4}1‘ b1, || H
~ Z-B-(Z/}

The region of convergence (ROC) is inside the unit circle only.

Example(2): Find Z.T including region of convergence of x(n) = a”u( n)

S e Vi S Bl

=0

or| z|>| 4

InZ
The region of convergence (ROC) is outside the unit circle I
ReZa- | 4
only. i

.2 Properties of 7. 1:

S.2.1 Linearity: The z-transform is a linear transformation, which implies
Z(ax(mtbx(n))=aX(2)*bX,(2) (5.2)

Where a and b are constants

S.2.2 Shift theorem (without initial conditions): Given X(z), the z-transform of a sequence x(n),

the z-transform of x(n - m), the time-shifted sequence, is given by;

A xM(n-m)y=2"X(2) (5.3)



5.2.3 Convolution: Given two sequences xi1(n) and x2(n), their convolution can be determined as

follows:
x(n)=x(n) ® x,= D, x(k) x,(n—k) =3, x,(n—k) x,(k) (5.4)
k=—0 k=—0
Where ® designates the linear convolution. In z-transform domain, we have
X(2)=X(2). X,(2) (5.5)
5.2.4 Multiplication | ial:
Z{a"x(n)}=X(2) | Lz (5.6.a)

a

Z{e" X)) =X | , .., (5.6.b)

5.2.5 Initial and final value tl .
initial value theorem|im x(11) = lim X(£2) = x(0 (5.7.a)
limx(n)=11m Z ' (Z-1) X(2) final value theorem (5.7.b)
5.2.6 Multiplication by n:
XE{?Z{ nx(ofy=—- 2 (5.8)

Example3) : Find Z{(n-2) a8 cos[ mM(n—2)] u(n-2).
The solution is:
=772Z{ na'cos wnu(n) }
=Z2(-2) dZ{ a”cos wnu(n) }
az

» Z?— Zcoswd |
dZ 2 -2 Zcos w+l Z{




3 Inverse of Z.T
x(n)=Z"{X(2)} (5.9)
The inverse z-transform may be obtained by the following methods:
Using properties. .1
Partial fraction expansion method. .2

Residue method. .3

4. Power series expansion (the solution is obtained by applying long division because the
denominator can't be analyzed. It is not accurate method compared with the above three

methods)

Example(4): Find x(n), using properties , if
[0z
—z+1

Solution:

5 i) sin (alz
Since Xiz) _ ( _ ) : 5in (a) 1
—z+1 \sin(a)/ z* — 2zcos(a) + 1

by coefficient matching, we have

A

—2cos(a) = —1.

Hence, cos(a) = 0.5, and a = 60°. Substituting a = 60° into the sine func-
tion leads to

sin (a) = sin(60°) = 0.866.

Fmally, we have

10 ?_|( sinfa)z ) [0
sinfa) 22— 2zcos(a)+ 1/ 0.866

=

sin(n- 60"

anl

11.547 sin (n - 60").

Example(5): Find x(n) using partial fraction method , if:

l
(1 —z=h(1 =057

Xz

W W



Solution:
Eliminating the negative power of z by multiplying the numerator anc
denominator by z? yields
=2
Il —=z= )l — 0.5z
=2
o (z— )iz —0.5)
Dividing both sides by z leads to

X(z) = -

Xiz) =
z iz — iz —0.5
Again, we write
Xiz) A o
= z—1) (z—0.5
() z
A=(z—-1) =2,
= =] [: —'D.ﬁ:l =]
Xz =z
B=iz— ﬂ'.ﬁ]L = —
z |amps 12— Df—ps
Thus
Xiz) 2 —1

MMultiplying = on both sides gives
7 -
X@)=———+ —.
(z—1) (z—0.3)

() = 2u(n) = (0.5)"u(n).

Example(6) : Find x(n) using the residue theorem, if

2Z
X(Z): (Z-1(Z2-2)(Z-3)

The residue theorem is:
x(n) =Y residues of X(Z) Z ™! at the poles of X(Z) Z"™'=a.;+ b.i+ c.at ... (5.10)

= a

1 .nrl
(1! ,H%TI 1118 the order of the poleX(2)},Z {(Z—a) (5.11)



Solution:

27 d Z™' 3

- —n+Z
T 1!1}9? 47 (7-2)(Z-3) 2

22 )
T 0'1}51 Z-hz-y ¥

220
Ty Him

M52 (z- 2§ =

3

—np 2@+ ] @y e +big) = a

P o —
Zix(n-m)} =Z"{ X(Z)+Y 5k Z+)

Example(7) : Solve y(n) — (3/2) y(n — 1) + (1/2) y(n — 2) = (1/4)", y(-1) = 4, y(-2) = 10 forn > 0

Y- 2. 2+ 2 v+ Zﬁly{f‘zlﬁ + Z

a1 o
Y(m{l— Zleo 2= Z 2z

zez2-? 7+ 1y
v(Zz)=+*
z-h - L Z-
L (2/3) 22 ZZ YE?, (1/3)2

—(Z
2

An) = ﬁ(—)“+6g+ } u(n)



Take Z.T and solve for
Y2y X(Z)

Difference eq.

Write in terms of Z”! then
Cross multiply and take inverse

inverse of Z.T

H(Z)\ h(n)
T

If stable Z = ¢/ ey H{( &)

Continuous time system

Discrete time system

Differential equation

Difference equation

Ha (S)

H(Z)

H(GQ)

H(eW)

Ha(t) =L { Ha(S)}

h(n)=Z"{H(Z)}

N W



Discrete Fourier Transform and Signal SpectrumLec. 6

Discrete Fourier Transform .1

In time domain, representation of digital signals describes the signal amplitude versus the
sampling time instant or the sample number. However, in some applications, signal frequency
content is very useful than as digital signal samples.

The algorithm transforming the time domain signal samples to the frequency domain
components is known as the discrete Fourier transform, or DFT. The DFT also establishes a
relationship between the time domain representation and the frequency domain representation.
Therefore, we can apply the DFT to perform frequency analysis of a time domain sequence. In
addition, the DFT is widely used in many other areas, including spectral analysis, acoustics,

imaging/ video, audio, instrumentation, and communications systems.

Fourier Series Coeffici f Periodic Digital Sienals .2
To estimate the spectrum of a periodic digital signal x(n), sampled at a rate of fs Hz with

where there are N samples within the duration of the the fundamental period To = NT,

fundamental period and T = 1/fsis the sampling period. Fig. 6.1 shows periodic digital signal.

mial

=
2 /
¥
E—
I
—a
L
&
|
G L x
-y
..'-
——
_—
Ly
r
=
—
wn

c, :%J‘ LC k< oodt,  x(i) e -1 -'-"\\

07 Ta=NT 2N = x(0)

Fig. 6.1 periodic digital signal

Where, k is the number of harmonics corresponding to the harmonic frequency of kfyand

Wo = 21 / To and fo =1/To are the fundamental frequency in radians per second and the
fundamental frequency in Hz, respectively. To apply Equation (6.1), we substitute To= NT, Wo=
2n / Toand approximate the integration over one period using a summation by substituting dt =T

and t = nT. We obtain:

Axkn
x(n)ec, = N — o< k<Loo, (6.2)

N W



Since the coefficients ck are obtained from the Fourier series expansion in the complex
form, the resultant spectrum ck will have two sides. Therefore, the two-sided line amplitude

spectrum | Ck | is periodic, as shown in Fig. 6.2.

OC componant ki, =0udf, =0 Hz
| 1=t harmonic ki = 1xf, = f.;. Hz
Other hamonics .. O‘ther harmonics .

> L-f Zaiie

T T .

—fiz |- /2 Fofat Ty f
(___,-d"'} . 8= _ Hz

2nd harmonic kfp = 2xfa = 2f, Hz

Fig. 6.2 Amplitude Spectrum of periodic Digital signal

As displayed in Figure 6.3 we note the following points:
Only the line spectral portion between the frequency —fs/2 and frequency fs/2 (folding .a

frequency) represents the frequency information of the periodic signal.

The spectrum is periodic for every Nfy Hz. b
For the kth harmonic, the frequency is f = kfo Hz. fois called the frequency resolution..C

Example(1):
The periodic signal x(t) = sin (2xt) is sampled using the rate fs= 4 Hz.

Compute the spectrum ck using the samples in one period..a

Plot the two-sided amplitude spectrum | Ck | over the range from —2 to 2 Hz.b

Solution:

The fundamental freqyency W= 2n radians per

x(1)

second and fy= 1, and the' fimdhmental |pefiod To = 1
1/fi=025

second. The sampled gignal 5 |x(n) =",_s'n-'. 0.5 7[.'Ill ,,'énd

second. Since using th¢ santffling int_ex}%)al T

. X3l T
the first eight samplgs of it afe plotted as shown
N=4

Choosing one period, N = 4, we have x(0) = 0; x(1) = 1; x(2) = 0; and x(3) = —1. Using Eq. (6.2),

l l
&) 42 xi#) E' (00 4 2 1) 4+ 22 + x(3)) I-[}+ l4+0—=1)=10
m={l

| ¢ i ) -
0] =— E B 1) [ E[Ai“]+.1illn'_’““+.1[3k'_”+.1(3]e-‘-’3“"')
n—c; ;

(O8]

l
I{.t[[]‘] — () =22y + (3 =0 —J(1) =0+ — 1)) = —j0.5.



Similarly c3 = j 0.5. Using periodicity, it follows that c-1 = ¢1=j0:5, and c2= c2= 0.
b. The amplitude spectrum for the digital signal is sketched below:

|

0.5 0.9 L4 A=) oS 0.5 0.5

T

5 -4 -3-2-4 |2 J 3 5
f.le=2
f=4
6.3 Di Fourier T f F I
Given a sequence x(n), 0 <n <N - 1, its DFT is defined as:
x(1 ;"':”‘:' + n) Mk = Noy
~{/ .t =01, N-1 k=01, N-1
: — OFT ——»
x(oy | T x':N—1:' t=nT = KAF
lo et Ar=fe N
27[1(11— M-
X(k) Zx(n) e NV = ffk=01.N-1xn W 63)
n=0

Where the factor Wy (called the twiddle factor in some textbooks) is defined as

N 2m\ (27
W |—(—sm-|( W \ (6.4)
The inverse DFT is given by:

2 wkn 1 Al

—/— —,
]\;@ ex(n) = :]_\f _ , fb{(ff:o,l,N—l)((k) 14 (6.5)

We can use MATLAB functions fft() and ifft() to compute the DFT coefficients and the inverse
DFT.

Example (2): Given a sequence x(n) for 0< n < 3, where x(0) = 1, x(1) = 2, x(2) = 3, and x(3) =
4. Evaluate its DFT X(k).
Solution:

Since N = 4, W4= ¢ 72 then using:

3 3

Xik) ZJ[HJHTT z.miult'_ﬂn_

H={} r=il

oo W



For K= 0, X(0) = 10. Similarly, X(1)=-2+j2,X(2)=-2,X3)=-2-j 2
Let us verify the result using the MATLAB function fft():

X =fft([12 3 4])

—2.0000 — 2.0000i— 2.0000X = 10.0000 —2.0000+ 2.0000i

Mapping the frequency bin k to its corresponding frequency is as follows:

Koy .
w = — (radians per second),

N (6.6)

Since ws= 2 =« f;,then:

! % (Hz),
N (6.7)

We can define the frequency resolution as the frequency step between two consecutive DFT

coefficients to measure how fine the frequency domain presentation is and achieve

Aw % iradians per second),
' (6.8)
Af ﬁ Hz).
N (6.9)
Example (3): In example (2), If the sampling rate is 10 Hz,

Determine the sampling period, time index, and sampling time instant for a digital sample x(3) .a
in time domain.
Determine the frequency resolution, frequency bin number, and mapped frequency for each of .b

the DFT coefficients X(1) and X(3) in frequency domain.

Solution:
a. In time domain, we have the sampling period calculated as
T =1/ =1/10 = 0.1 second.
For data x(3), the time index is # = 3 and the sampling time instant is
determined by
t=nT =3-0.1 =023 second.

b. In frequency domain, since the total number of DFT coefficients is four,
the frequency resolution is determined by
. 10
£ — = 2.5H=
N4
The frequency bin number for X71) should be k& | and its corresponding
frequency is determined by

Af

Y | = 10 -
- 2.5H=z.
I=N~""3 8
Similarly, for Xi3)and & = 3,
ki, 3= 10
7 % - 7.5Hz

O W



4 Ampli rum and P I rum

One of the DFT applications is transformation of a finite-length digital signal x(n) into

the spectrum in frequency domain. Fig. 6.3 demonstrates such an application, where Ax and Pk are

the computed amplitude spectrum and the power spectrum, respectively, using the DFT
coefficients X(k).

First, we achieve the digital sequence x(n) by sampling the analog signal x(t) and

truncating the sampled signal with a data window with a length To= NT, where T is the sampling

period and N the number of data points. The time for data window is To= NT.

.J/ Aor P Af=f N

! e n ;

0T N-1 XiK)

|+H. To=NT - Powear
DsP

. o [spectum of
procassing | amplitude
xim) DFT or FFT spectrum

Fig. 6.3 Applications of DFT/ FFT
Next, we apply the DFT to the obtained sequence, x(n), to get the N DFT coefficients

N-1
X(k) = x(m) Wi, fork =0, 1,2, N L.
n=i (6.10)

We define the amplitude spectrum as:

| L . 3 : 5
Ag N X(k) E'.H.-'-:_Raall_l’[k].]'+£_Inmg..1f[k].]‘,

k=01,2,...,N-1

(6.11)

Keeping original DC term at k = 0, a one-sided amplitude spectrum for equation (6.11) is:

LIX©), k=0
A= " .
2IX(k), k=1,..., N2
(6.12)
Correspondingly, the phase spectrum is given by:
i} 'I[tmg'.ﬂkl'j .
I
p, = 1 — k=012 N=-1
fi =t Real X&),
(6.13) ' :

Besides the amplitude spectrum, the power spectrum is also used. The DFT power spectrum is

defined as:



1

P % X(k)? {{Real}l’[k]:]1+-::Imug:.¥[£;]:]1}.

k=01,2.....N-L

[

(6.14)
Similarly, for a one-sided power spectrum, we get:

.

| 2 ]
LIXOF k=0

21Xk k=0,1,..., N/
»
and _ i
(6.15) N

The frequency resolution is defined in equation (6.9). It follows that better frequency resolution

can be achieved by using a longer data sequence.

xn

4
3

As:%;

LR =N N

: Consider the seqy
a

ence:

the

2
ming that fs 100; Hz.TCompute

ampditudé¢ spectrum, phase spectrum, |and
| |

To=NT power spectium.
Solution:
Since N =4, DFT coefficients are: X(0)= 10, X(1)=-2+j2,X2)=-2,X(3)=-2-j2
Fork=0,f =k-f,/ N =0x 100/4 = 0Hz,
1 N 'I:tmg:.ﬂ[}]i) 0
Ao =4/ X(O)] = 25, g9 = tan (—ler Yoy) ="
1 ,
Py E X = 6.25.
Similarly:
K f Ak Dk in degree Px
1 25 0.7071 135 0.5
2 50 0.5 180 0.25
3 75 0.7071 -135 0.5

Thus, the sketches for the amplitude spectrum, phase spectrum, and power spectrum are given in

25

0707 05

0.7071

200" -

1002

—100%

—2000 4

the below Figures:

Py
a
6.25
4
0.5 0.5
0.25
} 1 F T« 4
0 1 2 3
: : fiHz)
0 =25 s0 75




We can easily find the one-sided amplitude spectrum and one-sided power spectrum as:
Ay = 2.5, 4 = 1.4141, 4;

| and -
"d'.lc
Py =023 P 2. P L. 4
25
We plot the one-sided amplitude spectrum for comparison: 2 14141 ;
[ K
0 2
} } } f(Hz)
@ 25 50

Note that in the one-sided amplitude spectrum, the negative-indexed frequency components are
added back to the corresponding positive-indexed frequency components; thus each amplitude

value other than the DC term is doubled. It represents the frequency components up to the

folding frequency.



Windowing and FFTLec. 7

71S | Estimation Usine Window Functi

Consider the pure 1-Hz sine wave with 32 samples shown in Fig. 7.1. As shown in the
figure, if we use a window size of N =16 samples, which is a multiple of the two waveform
cycles, the second window repeats with continuity. However, when the window size is chosen to
be 18 samples, which is not a multiple of the waveform cycles (2.25 cycles), the second window
repeats the first window with discontinuity. /¢ 1s this discontinuity that produces harmonic
frequencies that are not present in the original signal (spectral leakage ). Fig.7.2 shows the

spectral plots for both cases using the DFT/FFT directly.

. T+ T r .,:I

=i i - i - Z
o 5 i 15 an == b - ] o

3
\enow szee W =10 imeipks of wavslam pasionh Wi EEe: W = B Wi B2 b a1
3 i I

i e 1, 0 P B

W

win
Py - Ll £
" L
 Cw—
&
I: &

| g e s e i g i

L)1)
L=l

-Il.‘.m-..-v;-lu-n " -I':M-:n'r:::.lrlr ;;rm:n.mw.. ._,‘,';hmm;"u . o 'Al:d.'\-* -\lrull-'l- . "
Fig. 7.1 Sampling a 1-Hz sine wave using Fig. 7.2 Signal samples and spectra
(top) 16 samples per cycle and (bottom) without and with spectral leakage.

18 samples per cycle.

The amount of spectral leakage shown in the second plot is due to amplitude

discontinuity in time domain. The bigger the discontinuity, the more is the leakage. To reduce
the effect of spectral leakage, a window function can be used whose amplitude tapers smoothly
and gradually toward zero at both ends. Applying the window function w(n) to a data sequence

x(n) to obtain a windowed sequence xw(n) is better illustrated in Fig. 7.3 using :

Nln) = x(mwin), forn=01,..., N-1 (7.1)
ENERND i I
- e LT
Fig. 7.3 Illustration of the o =& 4 8 @ i@ W 18
window operation. N ez e ]’ ’ St *
:E “u T t\: T 4 i " {[5] i T |II Ir ;-ﬂ 2
o lds ] ERENENIEN

W



The common window functions are listed as follows:

The rectangular window (no window function):

wrin) =1 l=n=N-1 (7.2)
The triangular window:
M — N
Weritt) = 1 — u D=n=N-1
N-1 (7.3)

The Hamming window:

Wi (1) = 0.54 - [}.4ﬁms( ] D=n=N-1
N -1, (7.4)

i

The Hanning window:

(n) =035 [}513']':-( i ) l=n=N-1
W —_— =L = N —
Vi | 11 . . G0 No1) n=

N = (7.5)
Plots for each window function for a size of 20 samples are shown in Figure 7.4.
156 1 I Qi I
g o M4 S T - mm—— ] R S———
£ 2 K
£ o6 (- 11-H+t-H-+H-F+11H E o8 f--—--F . e
= - P
2 o4 H1HH+A A H A S o H-H -—
. p
Fig. 7.4 Plots g o2 HHHHHHHAHHE & o2 ﬂ - jﬁ —
= T T
o [+ R
of window o 5 1o 15 20 0 5 10 15 20
sequences 1 o ! T .
Z o8 [ --i— L = o8 -______i_.:__:_”_ 11 l____;,_______
) S— E o6 fomm- ot A
=) = . |
=04 f—-- £ 04 b1t I —
E T s vl T
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Example (1): Considering the sequence x(0) = 1, x(1) = 2, x(2) = 3, and x(3) = 4, and given fs =
100 Hz, T = 0.01 seconds, compute the amplitude spectrum, phase spectrum, and power
spectrum
Using the triangular window function. .a
Using the Hamming window function. .b
Solution:
Since N = 4, from the triangular window function given in equation (7.3), we have: (a
wud0) =0, wui(1) = 0.6667, wi(2) = 0.6667, and wy;(3) =0.
Now, applying eq. (7.1), we have:
xw(0) = x(0) wz(0) = 0. Similarly xw(1) = 1.3334, xw(2) = 2, and xw(3) =0



Applying DFT equation (6.3) to xw(n) for K=0, 1, 2, and 3 , we have:

X(0)=3.333

4, X(1)=-2-31.3334, X(2) = 0.6666, and X(3)=—2 +j 1.3334
Af=1/NT=25Hz
Applying equations (6.11), (6.13), and (6.14):

Ag = j—l|X[ﬂ}| =0.8334, ¢y = tan™" ( 0 ) =0°,

3.3334

1 )
Py = 25 |X(0)= 0.6954

K Ak Dk in degree Pk
1 0.6009 —146.31 0.3611
2 0.1667 0 0.0278
3 0.6009 146.31 0.3611
b. Since N = 4, from the Hamming window function given in eq. (7.4), we have:
Wand 0) = 0.08, wanl1) = 0.77, wau(2) = 0.77, and waud(3) = 0.08. The windowed sequence is

computed using eq. (7.1) as:
xw(0) = x(0) waud(0) = 0.08, xw(1) = 1.54, xw(2) = 2.31, and xw(3) = 0.32

Applying DFT equation (6.3) to xw(n) for K=0, 1, 2, and 3 , we have:
X(0)=4.25, X(1)=-2.23 -j1.22,X(2)=0.53,and X(3)=—2.23 +j 1.22

Af=1/NT=25Hz

Applying equations (6.11), (6.13), and (6.14):

Ap = E'X“]” = 1.0625, ¢p = lan (4 ,}S) = 0",

P :

|X(0)]*=1.1289

e
K Ak Dk in degree Pk
1 0.6355 —151.32 0.4308
2 0.1325 0 0.0176
3 0.6355 151.32 0.4308




2 Application h

The following plots show the comparisons of amplitude spectral estimation for speech

ral Estimation

data with 2,001 samples and a sampling rate of 8,000 Hz using the rectangular window (no

window) function and the Hamming window function. As demonstrated in Fig. 7.5 (two-sided

spectrum) and Fig. 7.6 (one-sided spectrum), there is little difference between the amplitude

spectrum using the Hamming window function and the spectrum without using the window

function. This is due to the fact that when the data length of the sequence (e.g., 2,001 samples)

increases, the frequency resolution will be improved and spectral leakage will become less

significant. However, when data length is short, reduction of spectral leakage using a window

function will come to be prominent.
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Fig. 7.5 Comparison of a spectrum without Fig. 7.6 Comparison of a one-sided
using a window function and a spectrum spectrum without using a window function
using the Hamming window for speech and a one-sided spectrum using the

data.

Hamming window for speech data.

7.3 Fast Fourier Transform

FFT is a very efficient algorithm in computing DFT coefficients and can reduce a very

large amount of computational complexity (multiplications).

Consider the digital sequence x(n) consisting of 2™ samples, where m is a positive

integer—the number of samples of the digital sequence x(n) is a power of 2, N =2, 4, §, 16, etc.

If x(n) does not contain 2™ samples, then we simply append it with zeros until the number of the

appended sequence is equal to an integer of a power of 2 data points.

The number of points N = 2™, where the stages m = log » N.

In this section, we focus on two formats. One is called the decimation in- frequency

algorithm, while the other is the decimation-in-time algorithm. They are referred to as the radix-

4

2 FFT algorithms. 6




7.3.1 Method of Decimation-in-F (Reduced DIF FFT)
Beginning with the definition of DFT :
N-1

X(k) =) xmWy' fork=0,1,...,N -1,
n=0

Where, Wx= e/ Nis the twiddle factor,and N =0, 2, 4, 8, 16,

expanded as:

X (k) = x(0) + x(DWE + ...+ x(N = ™
If we split equation (7.7):
.\r
X (k) =x(0) + x() W5 —...—_-(—— 1) =D
.\r
+ ( )H‘“ A\ D]

Then we can rewrite as a sum of the following two parts:

(N /2)-1 N—1
X(k) = Z _r[n}H"_f..-” + Z .\'{fr}li“’_,’r:.-” :
p— n=N/2

Modifying the second term in Equation (7.9) yields:

(N/2)-1 N/ N
X(oy= > xmwg+ w3« (n—‘?) Wk,

=l =0
N2 _ 2N i
Recall Wy~ = ¢/~ % =¢7/7 = —1; then we have
[-""r ."Iz.'_ 1 .\r
Xk) = E (1[;}}—[—1} \(H——))H’r”
n=0 =

Now letting k = 2m as an even number achieves:

(N/2)—1 J\r
X(2m) = Z (_‘-;[n] 4 x (n + —)) W ramm
n=0 -

While substituting k =2m + 1 as an odd number yields:

(7.6)

...Equation (7.6) canbe

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

N &



n=0 (7.13)

(N1 ,
.'ﬁ'u'
X2m+1)= E (.ﬂn} — X (n + 7)) Wi,

2arx 2

Using the fact that W3 = e 7% = ¢ /2 = Wy ,, it follows that

(N/2)-1
X(2m) = Z a(n) f:mz = DFT{a(n) with (N/2) points}
=0 (7.14)
(N/2)-1
X2m+1)= Z bm)yWy, H"'_,’.,:ffz = Df'l'{h[n} Wy with (N/2) pﬂims}*
n=l} (7.15)

Where, a(n) and b(n) are introduced and expressed as:

;ﬁ'u'r .'ﬁ'u'r
a(n) = x(n) + x| n+— |, forn=0.,1.. oy — 1

b(n) = x(n) — _‘-.'(n —;) forn=0.1,.. ;— 1.
(7.16)

DFT{x(n) with N points} =
(7.17)
Figure 7.7(a) illustrates the block diagram of N-point DIF FFT. Fig. 7.7(b) illustrates

DFT{a(n) with (N/2) points}
Df’]’{h[n]li"ﬁ with (N/2) pt}in[s}

reduced DIF FFT computation for the eight-point DFT, where there are 12 complex
multiplications as compared with the eight-point DFT with 64 complex multiplications. For a

data length of N, the number of complex multiplications for DFT and FFT, respectively, are

determined by:
Complex multiplications of DFT = N2, and (7.18a)
Complex multiplications of FFT ( With Reduction)= (N / 2 ) log (7.18b)
N)
— N4 |
X(IO) N2 . X(0)
1 : i
! point N/4 !
: i
1 1
! N- . N/4 :
! poin N2 |
; point v
—IX(N-1) | N/4 — x(N-1)

Fig. 7.7(a) Block diagram of DIF FFT
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X(0)
X(1)
X(2)
X(3)
X(4)
X(3)
X(B)
X(7)

Fig. 7.7(b) The eight-point FFT (total twelve multiplications).
Reduced DIF FFT

Note: The input sequence is in normal order index and the output frequency bin number is in

reversal bits order. The Butterfly structure for DIF FFT and DIT FFT is shown below:

F DIT E . C DIFA
Z B HX,G
1w W
C=A+B,D=(A-B) W} (7.192), F=NE + WG, I?IV= E-W*G (7.19p)
The inverse FFT is defined as:
| M-l L1 .
- N . SRR - ! . — AN

x(n) =+ > X(owikn = N D X(WY . fork=0.1,... N—1.

k=0 k=0 (7.20)

)=

oy
G

g — ooy —= Jawg— |onq —= |aw)— |oo)—= |oe—

E-A-- SO OF 3 3 4 1
Juwaoa=2ans

Fig. 7.8 Block diagram for the inverse of eight-point FFT.
Reduced DIF IFFT

, and the sum idyltiplied by a factoﬁ%'ﬁ: 17N.[ﬁ§rice, the is changed to beThe twiddle factor

inverse FFT block diagram is achieved as shown in Fig. 7.8



Example (2): Given a sequence x(n) for 0 <n < 3, where x(0) = 1, x(1) =2, x(2) =3, and
x(3) =4,

Evaluate its DFT X(k) using the decimation-in-frequency FFT method. .a

Determine the number of complex multiplications. .b

Solution:
27 27
-/ (0) -~ .
W=e T4 W‘:ezé‘lzma'jT =—7
Bit index 4 Bit reversal
.a-;0=1 2 X0} oo
H '1--;.4? _.
s R CIRL
e «  X(1) 0f

b) The number of complex multiplications is four, which can also be determined from eq.
(7.18b), where N=4

7.3.2 Method of Decimation-in-Time (Reduced DIT FFT);
In this method, we split the input sequence x(n) into the even indexed x(2m) and x(2m + 1), each

with N data points. Then Equation (7.6) becomes:

(N /2)—1 (N/2)—1

Xk = Z (2 Wk o Z x(2m -+ DWW
=10 =10

f{JI‘ J'I:\ = O, l,.. S ."\'r S 1 (721)

LWL = Wy,
Using it follows that:
(W21 (W /2)—1
X(k) = Z K 2m) W, - W Z X(2m + LYW
=10 - =10 -

fork=0,1,.... N — 1. (722)

Define new functions as:

(N /2)—1
Glk) = Z .'-:[an}li";:.ffz = DFT{x(2m) with (N /2) points}
m=A0
(N/2)—1
Y — - e T 4D 7 P i
Hk) = Z x(2m + VWL = DFT{x(2m + 1) with (N /2) points}.
=0

(7.23)

S D



Note that:

N N
{I{A}:{I(ﬁ_?)*f{}rﬁ:ﬂ* 1...--.7—1
H[k}:H(k—%)*ﬂ)rk:ﬂ* 1;— 1.

2 2 (7.24)

Substituting Equations (7.24) into Equation (7.22) yields the first half frequency bins

;ﬁ'u'r
X(k) = G(k) + WyH(k). fork =0, 1,....—— L.
: 2 (7.25)

Considering the following fact and using Equations (7.24):

AN = ik

(7.26)

Then the second half of frequency bins can be computed as follows:

;ﬁ'u'r ;ﬁ'u
X(T—k) = Glk) — Wy H(k), for k=0, 1,...,5—1.

(7.27)
The block diagram for the eight-point DIT FFT algorithm is illustrated in Fig.. 7.9

——— r—t ——s—e X0}
X(1)
Xi2)
Xz
Xi4)
Xis)
X8}
X(7)

complex (twelve decimation-in-timealgorithm usingFFTeight-pointFig.7.9 The
multiplications). Reduced DIT FFT

The index for each input sequence element can be achieved by bit reversal of the frequency

index in a sequential order. Similar to the method of decimation-in-frequency, after we change

in Fig. 7 aind multiply the output sequence by a factor of 1/N, we derive the inverse FFT Wx to
block diagram for the eight-point inverse FFT in Fig. 7.10.
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Fig. 7.10 The eight-point IFFT using decimation-in-time (Reduced method).

Example(3): Given a sequence x(n) for 0 <n < 3, where x(0) =1, x(1) =2, x(2) =3, and
x(3) = 4. Evaluate its DFT X(k) using the decimation-in-time FFT method.

Solution:
x{0)=1 > —— 0 X0)
e~ 2ap
@ e T Soom 5
x(1)=2 o= < 2@
X(3) =4 e = ~h—s X(3)

= -1
bit indexed Bit reversal

H.W Find DFT of the following sequence [ 1 -1-1-111 1 -1], using:

Reduced DIT FFT (a

Reduced DIF FFT (b

22— 218 2-B2— 2 2+/( 2k 2 Ans:[0
VAR 1 2-/( 242 2+,2

714 Propertics of DFT for real x(n):

X(K)=X"(N-K)

Re { X(K)}=Re{ X(N~-K);
Im { X(K)j=—-Im{ X(N-K)}

— ()= FFT] X" (K)T
N

K- W=K 27/ N— Q=K2x/ NT

frequency digital frequency  analog frequency
index (rad) (rad/ sec)

(7.26)



* means complex conjugate

For N even:
x(n)= X0 (ND?XR(% cos( . nKy—X, (% sin ( [&@» +Z + _ X coszn
N N N ! N N2
(7.27a)
For N odd:
(N-1)/2
=" ) cost k) X B sin KRS+ o
x(n) X(K)
Real Real part is even, imaginary part is odd
Real and even Real and even
Real and odd Imaginary and odd

Example (4): Find x(n) for Xgr(K) and Xi(K) , then find xa(t) if T = 0.1 sec.

Xr(K) Xi(K)
A A
2
1.54
0.5 1 1 5 64 3 K
> 0 0 0
175 K 123456
N=8, then using eq.(7.27a):
x(m) =22 + 24— () sin (PFd 1) + 2) cos(PF2.1) — (-1.75)sin (F21) } + °> cosz n
8 8 8 8 8 8
forK=1,2, ... g—l =3

on=l t=nT=w /T=2 7 KINTQ;
t 274t . 2mAt 0.5 1.5 2 . 2
2) €08 2 —1+.75) sin 2— cosw nx (=" "—+ sin
! )—'_8() (0.1 8 = ) (0.1 S)H 8(3.71 8{_861) (
for T=0.1sec.
x,(£) =0.1875-0.25sin 2.5 £+ 0.5 cos57 £+ 0.4375sin 57 t+ 0.0625cos107 ¢

W W



1.5 DFT and Fourier transform relations:

The Fourier transform X(elV) of an x(n) is given for all W:
N-1

X(e™)=2 xm) e’""=Y x(m) ¢/, n=0,12,..N-1 (7.28)
n=0

—0

From eq. (7.28), X(e!V) is a continuous function of W.

The DFT (N-point) of an x(n) is given by:

N-1
X(K)=) x(m) /257N K=0,12...N-1, (7.29)
n=0

Comparing eq.(7.28) and eq.(7.29), the DFT of x(n) is the sampled version of the Fourier

transform sequence as shown below

> ISEQQ}%W—I.X(K): X(e’ W) (7.30)

X(eW) X(K)

v

21(N-1) /N27/N 47/N




Analog Filter DesignLec.8

Intr ion: .1

Let us review analog filter design using lowpass prototype transformation. This method
converts the analog lowpass filter with a cutoff frequency of 1 radian per second, called the
lowpass prototype, into practical analog lowpass, highpass, bandpass, and bandstop filters with

their frequency specifications.

Butterworth Filters .2
8.2.1 Butterworth low-pass filter (LPF)
A typical frequency response for a Butterworth low-pass filter of order n is shown in Fig.

8.1.

1 IR AT eATE
|

| H :W (8.1)

Properties:
HKY| =lor noa
HUO)|? oy, 2 fnicall=" for
2 Fig.8.1 Butterworth LPF c/cs
H(O) aB) (-30103,_, =0707
| H,(jQ) | ?is monotonically decreasing function of Q, it is also called maximally flat at the

origin since all derivatives exist and are zero. As n — oo, we get ideal response.
The normalized LP Butterworth is obtained when:
Q.= 1rad/sec.
Substituting S =j Q in eq. (8.1), and rearrange to get the LP Butterworth poles, then:
S = (~1)m+D/2n]
,k=0,1,2,...2n—1Fornodd, Sy =1 L kxn/n (8.2a)
,k=0,1,2,..2n—1Forneven, Sy =1 £ (kx/n)+ (x/2n) (8.2.b)
For stable and causal filter:

1 1
I B(HES-S) 83

LHP poles 5

H(S8) =

B,(S) : Butterworth polynomial of order n (see Table (1)). 4



LHP: Left half plane.
Example(1): Find the transfer function Hi(S) for the normalized Butterworth filter of order one.

Solution: applying eq.(8.2a), where n=1, k= 0,1

ImS
Sozléoan(_S)
. i ‘ _ ‘ * * "ReS
S =1Zr=H,S). Using eq. (8.3) and taking LHP poles S:: Hn(—S)I’Hn(S)
1 1
H(S= S+1S—(-1)

8.2.2 Analog- to analog transformation
To obtain Butterworth filters with cutoff frequencies other than 1 rad /sec. It is

convenient to use 1 rad /sec. Butterworth filters as prototypes and apply analog-to-analog

transformation (see Table (2)). The transformational method is not limited in its application to

Butterworth filters.
1
TABLE 2 ANALOG-TO-ANALOG THANSFUHMA i
Protolype response Transformed lilter response Design equalions
20 bog 1G {52} 20 bog (500 Forwand: {13! = {111,
? ' 2 Backward: 1, = 2!/0),
I -
| e i ki 0
i, . o, o
Low-pass G'(5) & =50, Low-pass/i(5)
20 log 1 G801 20 log |H{ 513 Forward: (1! = f1,/11,
s e L F Backward: 2, = £,/11;
Ky &
| £, o,
Low-pass G (5) 5~ §1,/5 High-pass /{5)
: | 20 log |H (501 Forward: {1,, = ({1, — 1,)/2
iy e ,,-" '__u“ 1, = (X2, + 0007 - 0,0,
I A 0, = (N2, + 0,00 + 1,4,
Ky
a Backward; £, = min{jA], |8]}
1 2, g, 92,0 L
Lowpass (57 s SO Banapass H(S) A= (=00 + 0,0,)/(0,0, - D))
5(61, - 1) B = (+02 - 0,0,)/1046, - Q)]
20 log 1G(jfe)l 20 bog 110 Forward: £1,, = (£, — {})/2

ﬂ1 = Hﬂ..fﬂ.—}l: + npil"}lﬂ = ﬂl'ﬂlrnr
0, = (@07 + Q017 + /0,

1 Ry By58, * Backward: {}, = minllnl,l]ﬂi}
Low-pass Li[.‘.l'; S8t —84)  Dandstop H{S) ‘e Lo b A= !1,{!1,, — n;}.u"'l;ﬂ; ‘: 111,
: e _-:?"+'s':,n e ol g o= 0,00, = /(=8 + (L]
i - i'-l =i

W D



8.2.3 Desion E . (B b Filters:
A Butterworth LPF Filter of order n is given by the following equation:
| {(10“’1‘})/(10-0~1k2—11])j|F$

| 2 log,,(1/Q,) | 4

Here, 1 /Q,: QL/ Q, , see Table (2).
Where, ki, k2, Q2,,, and Q' are the pass-band gain and stop-band attenuation with their

relative frequencies respectively(see Table (2)).

To satisfy our requirement at €, exactly, then:
~ 0.1k
Q.=0Q,/(10 —=1) 2" (8.52)
To satisfy our requirement at Q' exactly, then:
—9.1khy 1/2
= Q' /,(10Q —1) (8.5b)

Q. is the cutoff frequency at — 3dB

Example (2): design an analog Butterworth LPF that has a — 2 dB butter cutoff frequency of 20

rad/sec. and at least 10 dB of attenuation at 30 rad/sec.

Solution: Applying eq. (8.4), where k1= -2 dB, k2=-10 dB, Q,= 20 rad/sec., and 0= 30 rad/sec

)41 lg%j&l[log | O

To satisfy our requirement at QQ, exactly, then:

=21.3836 rad/gec;]1)Q2, =20/ (10

/

From Table (1) of normalized Butterworth LPF ( Q.=1 rad/ sec ) withn=4 :

1

A = 076536 5+ 1) (57 +184776 5 +1)

Using Table (2) and applying LP — LP transformation, S— S /21.3836, and rearranging:

0.20921x10°

H(S) =
5 (8% +16.3686 S +457.394) (S +39.5176 S +457.394)

For Butterworth HPF:

1- put 1/ Qrz Q / Qu in equation (8.4), and find its order n .(see Table(2))



2- Use Table (1) to find the normalized Butterworth LPF equation with order n.
3-  Apply LP — HP transformation, S— €./ S, and rearrange the equation obtained in step

2.
For Butterworth BPF:
1- Calculate Q;=min { | A | , | B | } using equations given in Table (2). Find the filter
order using eq.(8.4)
2- Use Table (1) to find the normalized Butterworth LPF equation with order n.

2
¢ and rearrange the equation3- g F:l&%-» BP transformation, § ——/
sth)-0)

obtained in step 2
For Butterworth BSF: i § 20 Ly | B

Refer to Table (2) to see the variables.

Fig. 8.2 Butterworth BPF
Example (3): Design an analog Butterworth BPF with the following c/cs:
A —3.0103 dB upper and lower cutoff frequencies of 50 Hz and 20 KHz.
A stop-band attenuation of at least 20 dB at 20 Hz and 45 kHz.
Solution:
Q=27 (20) = 125.663 rad / sec.
QD =2m (45 x 10%) =2.82743 x107rad /sec.
Qu=2m (20 x 10%)=1.25663 x 10°rad / sec.
Q=2 m (50) =314.159 rad /sec
Calculate Q= min { | A | , | B | } =min ( | 2.5053 | , | 2.2545 | ) =2.2545 by using equations
given in Table (2) . Apply eq. (8.4) to find:

n=[2829]=3
From Table (1) of normalized Butterworth LPF ( Qc=1 rad/ sec ) withn = 3:
H(S)= o
S’+285*+285+1

243, ST+Q Q.
¢!=——Apply LP — BP transformation by substitu‘[inSS-i_iﬁ’784X10 i , inthe
S§(1.25349x10°)S(Q -Q )

above equation and rearrange it to obtain Hgpr (as H. W)

W



8.3 Chebyshev Filters:
There are two types of Chebyshev Filters:
1- One containing a ripple in the pass-band (type 1).

2- One containing a ripple in the stop-band (type 2).

. 2 1
| Q(JQ)| —Tw (8.6)

Tu(Q) is the nth order Chebyshev polynomial where To(x) =1, and Ti(x) = x as listed in Table

2

& is a parameter chosen to provide the proper pass-band ripple. Fig. (8.3) shows(3).

normalized Chebyshev Filters of both types.

n even nodd

Fig.( 8.3) Normalized Chebyshey filters of type 1 for (n odd), and (n even)

8.3.1 Desien Equati f Chebyshev Filters:

! g Jolg g 8.7)
110 ,,(G7 Hlog|
= stop band attenuatio n (dB)20log,, [1/ A ]
(8.8a)
=[(A-1)/g 17 (8.8b)
K K
S) = =
| A [Ies-58c ves)
= V,(0)=8, nodd (8.9)

1+ 5K \/H@)ﬂza
neven

Table (4) gives Vi(S) for n =1 to n =10 and ¢ corresponding to 0.5, 1, 2, and 3 dB ripples.

Table (5) gives the zeros {poles of H,(S) } for the same n and &. g



2 Design fCh hev LPF, HPF, BPF. and BSF :

Use the backward design equations from Table (2) to obtain normalized LPF requirements 1
().

Calculate A using eq. (8.8a) 2

Calculate g from eq. (8.8b), then apply eq.(8.7) to find the ordern. 3

Use Table (4) and Table (5) to find the Chebeshev Filter equation with order n. 4

Apply LP — LP or HP or BP or BS transformation (Table (2)) and rearrange the equation 5
obtained in step 4.

Example (4): Design a Chebshev filter to satisfy the following specifications:
1-Acceptable pass-band ripple of 2dB

Cutoff frequency of 40 rad/sec. 2

stop-band attenuation of 20 dB or more at 52 rad/sec. 3

Solution: From Table (2)

Q.=0Q"/Q,=52/40 = 1.3rad/sec.

=—2020log, [1/A ] |
A=10, using € =2 dB = 0.76478 (see Table (4) and Table(5))

Applying eq. (8.8b), then g=13.01

(13~0llf|'4 [13.01+ log

| \ | n=| Lo ,nodd
|0 (13) : 1.3 +log |
From Table (4) withn=5and e =2 dB =0.76478
0.08172

H(S)=

S°+0.70646 5*+1.499 S°+ 0.6934 5%+ 0.459349 S+ 0.08172

Using poles from Table (5):

0.08172

B(9)= (S +0.218303)(S>+0.134922 S+ 0.95215)(S>+ 0.35323 S+ 0.393115)

Using Table (2) and applying LP — LP transformation, S— S / 40, and rearranging the above

equation:

o 8.36610°
P T (§48.73212) (52 +5.3969 S +1523.44) (S7+14.1292 S+ 628.984)

Notes:

1. Butterworth or maximally flat amplitude; as the order (n) is increased the response

becomes flatter in the pass-band and the attenuation is greater in the stop-band.



Chebshev Filter has a sharper cutoff; i.e., a narrower transition band ( best amplitude

2
response) than a Butterworth filter of the same order (n)

Chebshev Filter provides poorest phase response (most nonlinear). The Butterworth filter

3
compromise between amplitude and phase ( this is one of the reasons for its widespread

popularity).

8.4 Elliptic Filters:
A LP elliptic filter provides a smaller transition width and is optimum in the sense that no

other filter of the same order has a narrower transition width for a given pass-band ripple and

stop-band attenuation.

|
| |

n I

|

S—r Vavy AL, FLig

Fig. 8.4(b) elliptic LP filters typesFig. 8.4(a) normalized elliptic LPF

Fig. 8.4 (a) shows a normalized elliptic LPF and Fig. 8.4 (b) shows elliptic LP filters of

type 1 (n odd), and type 2 (n even).

Design steps of Elliptic LPF, HPF, BPF, and BSF : using Table (6)

1
Locate ki= acceptable pass-band ripple (dB) , and ks = stop-band attenuation (dB). . |

Calculate Q. using Table(2), pp.55. 2

At Q:column, take a value /ess than Q. 3
The filter order (n) is the far left of that row, and the coefficients for the filter are found .4
in all rows corresponding to that (n).

According to (n), the normalized elliptic LPF equations are:

(n-1)/2 Sz-l—A 4
AP 07
p —H((gfég H STBS+B. ,nodd (8.10 a)

S N



/2 S+ A,,
HS)=HS) ]|l —+5577 (8.10b) ,neven
i=1 i 11

o1

6- Apply LP — LP or HP or BP or BS transformation (Table (2)) and rearrange the equation

obtained in step 5.

Notes:

For normalized elliptic filter, Qo= (Q2 Q1) %3 = 1 = geometric mean, and Q;= Q./ Q;
,then Q1= (Q:) %3, and Qo= () 9
QFor not normalized elliptic filte, Q =I(QZ' 0 /Qand O ='2Q y 0, wherg Q £Q),
/Q Then @ =0 /0" =0

n (elliptic) < n (chebeshev) < n (Butterworth)

Example (5) : Find the transfer function for an elliptic LPF with — 2 dB cutoff value at 10000
rad/sec., and a stop-band attenuation of 40 dB for all Q past 14400 rad/sec.

Solution:

Q=(Q Q 5= {(14400) (10000)}°3= 12000
Q=0 /0= 10000/12000= 5/6 and Q = Q= 14400/12000 = 6/5

/QQ =Q /Q =Q =144 k=-2dB, and ka=— 40 dB. From Table (6), n =4

Applying eq. (8.10 b), Where:
Ho=0.01, Ao1=7.25202, Bo1= 0.212344, and B11= 0.467290, i=1
A= 1.57676, Boo= 0.677934, and B12= 0.127954 i=2

0.01(.S*+7.25202) (S*+1.57676)
~ (S2+0.467290 S +0.212344) (S2+0.127954 S + 0.677934)

Apply LP — LP transformation (Table (2)), where Qo= geometric mean = 12000. Substituting
S — S /12000 in the above equation:

O 0.01(82+1.04429x10%) (82 +2.27053x10°)
HrtS)= (62 4 5607.48 5+ 30577536) (52 +1535.448 S+ 97622497)




Digital Filter Design Lec.9

9.1 Introduction:

A discrete time filter takes a discrete time input sequence x(n) and produces a discrete
time output sequence y(n).

A special class of a discrete time shift-invariant system can be characterized by a unit

sample response h(n), a system function H(Z), or difference equation.

D a, fn—k)=) b x(n- ©.1)

k)
k=0 k=0
M
b Z*
——H(Z) == 9.2)
Z a, £ -
k=0
M

e o
Hie'™) = Z=e'", 9.3)

k=0

A filter may be required to have a given frequency response, or specific response to an
impulse, step, or ramp, or simulate a continuous analog system. The simulation of analog filter is

shown in Fig. (9.1).

Xa(t) A/D converter | X(1) Dlscrete y)  D/A converter | Ya(D)
_— »| time filter > RN
(1/T) samples/ H(Z) (1/T) samples/
sec. sec.

Equivalent analog filter

Fig. (9.1) Equivalent analog filter
A/D converter consists of sampler, quantizer, and coder.

D/A converter consists of decoder, sample and hold, and low-pass filter.

Definitions .1
If unit sample response h(n) is of finite duration, the system is said to be a finite impulse .1

response (FIR) system. Eq. (9.1) represents FIR system if ao# 0 and ax= 0 for k=1, 2,..N.



If unit sample response h(n) is of infinite duration, the system is said to be an infinite .2
impulse response (IIR) system.

IIR filter is usually implemented by recursive realization (is one in which the present .3

value of the output depends on both the input present and or past values), i.e., with
feedback.
FIR filter is usually implemented by either a nonrecursive realization (without feedback) .4

or an FFT realization.

9.1.2 A comparison between FIR and IIR filters:

FIR IIR
1- Finite impulse response h(n) 1- Infinite impulse response h(n)
ns<ns< n n<n< o
2-Complex requires large number of 2- Simple, does not require
large

computations
number of computations

3- Due to large number of computations, | 3- Dose not require large memory

it requires large memory

4- Always stable because its poles lie at 4- Stable only if its poles lie inside the

the origin unit circle of the Z-plane

5- Linear phase characteristics 5- nonlinear phase characteristics

2.2 Infinite Impulse Response (IIR) filter format
An IIR filter is described using the difference equation (9.1) as:
vin) = byxin) + bpln — 1)+ - 4 bagxin — M)

—an =1y =« —ayvin— N).

9.4)
The IIR filter transfer function given in eq.(9.2) as:
F(z) by+biz' 4 4 byz™
Hiz) o T ) Mz
Xz l4az7" 4+ +ayzN
9.5)
Example (1): Given the following IIR filter:
ym)=02x(n)+04x(n—1)+0.5y(n—1),
Determine the transfer function, nonzero coefficients, and impulse response.
Solution:
F(z) 02404
Hiz) .
Xz} 1-05z

W



by = 0.2, by =04, and a; = -0.5.

Using the inverse z-transform and shift theorem, we obtain the impulse response as

hin) = 0.2(0.5" u(n) +0.4(0.5 "uln - 1),

9.3 Techni for designing H(Z) for IIR filter:
93,1 Desien | . ical soluti £ diff ial S

A continuous time linear filter is specified by the following difference equation:
N d* (0 2 (9
.6 —" G’“V (9.6)
k=0

M

a5
H(S)=—" 9.7)

Z ¢S 4
=0
Approximate the derivates using first backward differences:

VO U] =[Nn) - {n-D]/ T 9-8)

Higher order backward differences  are found by applying  the first backward difference
repeatedly, as follows:

VO] =V [VEL [ )] ] 9.9)

Using the k™ order differences as approximations to the derivatives given in eq. (9.6), we have:
M ” N
. d P ydn]=c,V V[x(aT)] (9.10)
=0 =0
The Z. Transform of the 1%tand k™ order differences are given below:
Z{ VO A =Y(2){1-Z2"31/ T (9.11)
ZIVO M =Y(2) [{1-ZH}/ T (9.12)
Letting x(n) = xa(n T), and y(n) = ya(n T). Taking the Z. Transform of eq. (9.10):

X(Z) [{1-ZY/ T e Y(2),[{1-2H /T =).d

H(@:L(é Y (=27 0 (9.13)
X() {1 ZW/ T Zc

Comparing eq. (9.7) and eq. (9.13), we find:



H=H(S) ‘ (=2 (9.14)

T

H.W: If H(S)= - use the numerical solutions of differential equations to obtain
(S+1)(S+2)

H(Z) for, a) T =1 sec., and b) f;= 100 Hz.

9.3.2 Bilinear transformation (BL'T) Design method:
Figure (9.2) illustrates a flow chart of the BLT design used

Digital filter
specifications

l 1. Transfomation with frequancy warping

| Analog filker spacifications |

2. Transformnation by lowpass protatype filtar

| Analog filtar transfer function |

3. Bilinear transfomaticn

Digital fitter transfer function
and fraquency responsa venfication

Fig. 9.2 General procedure for IIR filter design using bilinear transformation.

H(Z)=H,(S) | 20-2) ©0.15)

T(+z7")
2(1- 21
ST+ Z7
2(1-ehM
ra +_€Wé_ (9.16)
2 efji/z ejW/Z_e—jW;_ZQZ_
TefjW/Z ejW/Z_}_efjW/
2
2 w
Q;— tan}_) , rad / sec 9.17)
0.18) —  radW =2tan” (1)

As (W/2) becomes smaller, we get more linear characteristics [ (W/2) << 1 ]. If the bilinear
transformation is applied to an Ha(S) with critical frequency €., the digital filter will have critical

frequency We. 6
5



Q. T

. (9.19 5 W =2tan™ (77¢ ")
If the resulting H(Z) is used in an A/D-H(Z)-D/A structure, the equivalent critical frequency
becomes:
W=, T (9.20)
2, ,,Q.T
9:21 —_ =" tan (77¢ 7 HQ
ceq ( 2 ) T ( )

Which will give Qconly if Qc T /2 is so small, that tan/(Q T /2) = Q T /2.
In bilinear transformation, the design of digital filter does not depend on the sampling
rate (T =1, prewarp case). For a low-pass filter, with S — S / Q. , and applying eq. (9.17), then:
(g2 ) 1-z")2
ra+zha o, (1+Z-1)fh‘{1§

Example (2): Design and realize a digital low-pass filter using bilinear transformation method to

satisfy the following c/cs:

—3.01 dB cutoff frequency of 0.5 rrad .1
Magnitude down at least 15 dB at 0.75 rad. .2
Solution:

Step (1): applying eq. (9.17), where T=1 (prewarp case)

Q =2 tan (%Vl )=2 tan(0.5 7/ 2) =2
, W,
Q=2 tan (2 ) =2 1an(0.75 7/ 2) =4.8282

Step (2) : applying eq. (8.4) and (8.5a):

| {10717y / (1001 % — 1()}T1(1g
| 2log,(1/Q,)

{(103T1/10r}] 51]1815/10 1)}—||_10g p=| L
| 2log10(2/48 82) |

rad =2, -1),Q.,=2/(0

[o) W@



Referring to lecture 8, Table (1) to write the normalized Butterworth LPF equation, and then

using LP — LP transformation:

H(S) =

1
L§1§22_5+42 §18 +
Step (3): Applying bilinear transformation, eq.(9.15), T =1

1+2Z2'+ 22 4 _
H2)= 2(1-27) 2(1-271 3.4142135+0.5857865 2>
[ &2 14 —EH 2[
(I+27) (1+Zz7)

y(n) = 0.2928932 { x(n) + 2 x(n—1) + x(n-2) } — 0.1715729 y(n-2)

Use digital specifications to calculate the order of digital unit bandwidth low-pass .1
Butterworth prototype and corresponding critical frequency Wp. The order of the digital

filter can be obtained by using eq. (9.17) of the prewarped digital frequencies Q2,, and

(Yin the standard formula for the analog Butterworth filter { eq. (8.4) }, as:

| {107 %) / (10701 — 10)}T1c1g
> T 2log, {tan( W /2)/tan( W, /2)} | ©-22)

4(10=2 tan W' ! Mah( W/ 2)1-1) (9.23)

Note: Refer to lecture 8, Table (2) to substitute for Q;in eq. (9.22) in terms of eq.(9.17).
Table (1) Digital-to digital transformation

Type

From To Transformatian Dasign lormulas

)
[ = -
Liow pats - i i ol g I.|I||.||l. |,|. I

I!'| 0 dog e~ |'|'_\ '1”_"! - “_._-_l e 1|II|I|III - l...mp!.'.”
| vl " Ry
II, (d

'
e ! (510 |-fﬂ.- - LII.-I,I':E
ol 20 log 11" n| S Bl o = E_l_{”_ —
L ¥ e 1 ==l " e
-’-.'1:'2":_...._.,- | _Z:rd:. | + a2 1
# kg
' 5
Jmk k=] . -
Lipw pass -+ Hasdpan g1 I: L l_ —I - L‘_"!‘liln_“_l‘ll_lu:!
”I_"E'WIHI(W” ] izl _‘I—.,—- cos [y = w 12
Fi il e l ' = E. F ko= col [lws = wy)f2] tin (02
i/ ) by L 4 L
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(9.24) 3- From Table (1), calculate ¢ = S (0, = W)/ 2}
sin{ (0,+W,)/2}
4- Table (2) gives Hgn (Z) for normalized low-pass Butterworth digital filter. Calculate
H(Z) = HBn(Z) | P (7' -a) (925)
(l+az')

Example (3): Use Digital-to digital transformation method. Find H(Z) for LP digital filter that
satisfies the following requirements:

1- A —3.0102 dB cutoff digital frequency of 0.5 = rad.

2- Attenuation at and past 0.75 & rad is at least 15 dB

Solution:

-| {(10 0.30102 ~1)/ (101.5 _1:) 1?%1121:211: | O
| 2 log,, { tan(0.57/2)/tan( 0.757/2)} |

=2 tan™' {(10°"'2—1) """*tan(0.57/2)} = 0.57, 6p= 1 (normalized) W

= sint(1=0-57) 723 _ 293401993
sin{(1+0.57)/2}

Using Table (2) that gives Hgn (Z) for normalized low-pass Butterworth digital filter

- 0.144106 (1+ Z')?
)T 0677496 27 +0.253921 22

Applying eq.(9.25) , then:

(1+Z*ﬁ(m _
3.4142+0.5858 7

9.3.4 Impulse invariant desi hod

If ha(t) represents the response of an analog filter to a unit impulse 5(t), then the unit
sample response of a discrete-time filter used in an A/D-H(Z)-D/A structure is selected to be the

sampled version of h(n).

HZ)=Z{Kn)}=Z{h(t)| _,r} (9.26)

If an analog filter with system function Ha(S) is given, the corresponding impulse invariant

design filter has
_ -1
HZ)=Z\ L HS)| 1 (9.27)
Example (4): Find H(Z) corresponding to the impulse invariant design using sampling rate of
(1/T) samples / sec. for an analog filter Ha(S) specified as: Hi(S)=A/(S+a )

6
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Solution:
ha(t) =L 'Ha(S) = A e ~**u(t)

h(n) = ha(t) t=nr= A e ~*"Ty(nT)

AZ
H(Z)=Z{An)} = J_oal

| ]i(J'Q}:mz%Qz)m , §=7Q
YLH(e fiij:_jwz_a oy WA_ s Z=¢""
H,,(jQ)= H(e'" \) WHQT% Q<r/T,
A Q< 7/ T,

A = {1-eTcos(Q T) } + j e*Tsin(Q T)

A
o g Q<r/T,
‘ &7 )% \/ 1+ e227—2¢e “Tcos(QT) -

—
— b ———— T
0 i = W 4 5 k7 X 9 0 3|+ 2
1
-';' L 1]
4 Eijuie | e log o
1] Li . 1 1
o5 5% 7y
r] \
Y
411 ! 4
%
s’ LY
| 0,5 _#-‘ &
-
1 1
J=h 1
i Tk I

representsoo =1, T=0.1, | Ha(j Q) | and | Heq(G 2) | are very close. (a)
represents o= 1, T=1, | Ha(j Q) | and | Heq(j Q) | are different. (b)
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Good results using impulse invariant design are obtained when the time between samples is

selected small.

4 Pole-Zero Placement Method for Simple Infinite Impulse R nse Filters Desion

This section introduces a pole-zero placement method for a simple IIR filter design. Let

us first examine effects of the pole-zero placement on the magnitude response in the z-plane
shown in Fig .(9.3).

In the z-plane, when we place a pair of complex conjugate zeros at a given point on the
unit circle with an angle 0, we will have a numerator factor of (z — ¢ 1%)(z — €7?) in the transfer
function. Its magnitude contribution to the frequency response at z = ¢ W is (e W — e 1% (e W~ e
9). When W = 0, the magnitude will reach zero.

When a pair of complex conjugate poles are placed at a given point within the unit circle,
we have a denominator factor of (z — r € 1%)(z — r e7%), where r is the radius chosen to be less
than and close to 1 to place the poles inside the unit circle. The magnitude contribution to the
frequency response at W = 0 will rise to a large magnitude, since the first factor (e1%—rei% = (1
— 1) eJ%gives a small magnitude of 1 — r, which is the length between the pole and the unit
circle at the angle W = 0. Note that the magnitude of e 1%is 1.
Therefore, we can reduce the magnitude response using zero placement, while we increase the
magnitude response using pole placement. Placing a combination of poles and zeros will result in
different frequency responses. such as lowpass, highpass, bandpass, and bandstop. It is easy to
compute filter coefficients for simple IIR filters. Practically, the pole-zero placement method has
good performance when the bandpass and bandstop filters have very narrow bandwidth
requirements and the lowpass and highpass filters have either very low cutoff frequencies close to

the DC or very high cutoff frequencies close to the folding frequency (the Nyquist limit).

Fool W

4
/ ;)\ Factor in numerator = ( z - e*'.a)fz— e"'ﬁ)

T — IU * Magnitude response in numerator atz=eW

/ rﬁ\ Factor in denominator = (z— re".ﬁ}{z— re_".e}

f./2 i -.| 8 ) - . iw
/ -l I » Magnitude response in denominator at z=e

|/

Fig. (9.3) Effects of pole-zero placement on the magnitude response.
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Poles in a band-pass filter are complex conjugate, with the magnitude r controlling the
bandwidth and the angle 0 controlling the center frequency. The zeros are placed at z = 1,
corresponding to DC, and z = -1, corresponding to the folding frequency.

The poles will raise the magnitude response at the center frequency while the zeros will
cause zero gains at DC (zero frequency) and at the folding frequency. The following equations

give the band-pass filter design formulas using pole-zero placement:

rezl — (BWsgg /fs) x m, good for 0.9 = r < 1 Im(z)
g = (f_“) % 360" y ../ f\\
}(ﬁ o 2"11 A ! » Re(z2)
S
Kiz—=1)z+1 K(z -1 W/
H(z) = [ _ A }. =5 [ : 2)° \"-——-i"/
(z —red®)z—re®) (22— 2rzcosf +r?) 3=(ﬁ)xseo°
fs

(1 —r)v/1 —2rcos20 +r?
2|sin 6|

K =
(9.28)

Where, K is a scale factor to adjust the band-pass filter to have a unit pass-band gain

Example (5): A second-order bandpass filter is required to satisfy the following specifications:

Somnhnn’ rafa =X TIHUHUT H~ .
I
g
A3 dBJb [N 2
Narrow passband ¢ e : 3
foor
Zeroga | / i ‘-\ 4
Find the transfer function using the pc l =1 d
0 f fs/2
Spl ' -3
o° ¢ 180° X

r=1—{200/8000)7 = 0.9215

1000 o
o= (—smm) % 360 = 45°,

(1 =0.9215)v/1 =2 x 0.9215 x cos 2 x 450 + (.92152 _
K = . = 0.0755.
2|sin 45°|

e 0.0755(=2 — 1) 00755 -0.075522
&) = 3709215705450 2092150 1 —1.3031= 1 208491z 2




9042 S J-Order Band (Notch) Filter Desi
For this type of filter, the pole placement is the same as the bandpass filter. The zeros are

placed on the unit circle with the same angles with respect to the poles. This will improve

passband performance. The magnitude and the angle of the complex conjugate poles determine
the 3 dB bandwidth and the center frequency, respectively.

Design formulas for band-stop filters are given in the following equations:
res 1 — (BWisgg/f:) x m good for 0.9 <r <1
0 = (’fi) x 360"
fs

H(z) = K(z—e/)z+e7)  K(z*—2zcos+ 1)
== (z —re/®)z —re®) (22— 2rzcosf +r?) "

(1 —=2rcosf +r?)
K== (2 —2cosf) -
£ =co (9.29)

Example (6): A second-order notch filter is required to satisfy the following specifications:
Sampling rate = 8,000 Hz .1

A 3 dB bandwidth: BW = 100 Hz .2
Narrow pass-band centered at fo= 1,500 Hz: 3

Find the transfer function using the pole-zero placement approach.
Solution:

re 1 —(100/8000) % 7 = 0.9607,

Pt

1500 0 om0
fl = (m) x 3607 = 67.5".

(1 =2%0.9607 cos 67.5° + 0.9607%)
K=- =~ = 0.9620.
(2 — 2cos 67.5%) ’




0.9620(z% — 2z ¢cos 67.57 + 1)
(z2 — 2 % 0.9607z cos 67.57 + 0.96072)

~0.9620 — 0.7363z7" +0.9620z"7
- 1-0.735371+0.9229

H(z) =

9.4.3 First-Order Low-pass Filter Design

The first-order pole-zero placement can be operated in two cases. The first situation is

when the cutoff frequency is less than fs /4. Then the pole-zero placement is shown in Fig. (9.4a).
As shown in Fig.(9.4a), the pole z = a is placed in the real axis. The zero is placed at z = -

1 to ensure zero gain at the folding frequency (Nyquist limit). When the cutoff frequency is

above fs/ 4, the pole-zero placement is adopted as shown in Fig.(9.4b).

L

L
]

</ ve o] |
N —A \ ) / ' |

|

|

|

- |
oo 2 T 0 f, k12

Fig. (9.4a) Pole-zero placement for the Fig.(9.4b) Pole-zero placement for the

first-order lowpass filter with fc <fs/4. first-order lowpass filter with fc >fs/4.

Design formulas for lowpass filters using the pole-zero placement are given in the following

equations:
K(z+1)
Hiz)=——.
[ (z—a)
. (1 —a)
K —T.
(9.30)

Example (7): A first-order lowpass filter is required to satisfy the following specifications:
1. Sampling rate = 8,000 Hz

2 A 3 dB cutoff frequency: fc= 100Hz
3. Zero gain at 4,000 Hz.

Find the transfer function using the pole-zero placement method.

Solution: Since the cutoff frequency of 100 Hz is much less than fs/ 4 = 2,000 Hz, we determine

the pole as:

7
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a1 —2x(100/8000) x 7 = 0.9215,

Which is above 0.9. Hence, we have a good approximation. The unit-gain scale factor is

calculated by:

— 09215
K = [Ii&: 0.03925.

H(:) = 0.03925(z + 1) 0.03925 +0.03925z""
T (z=0.9215) 1 —0.9215z!

Note that we can also determine the unit-gain factor K by substituting Z = € = 1 to the transfer
function H(Z) = (Z + 1) / (Z - a), then find a DC gain. Set the scale factor to be a reciprocal of
the DC gain. This can be easily done, that is,
z+ I+
z—0.9215| _, 1-10.9215
Hence, K = 1/25.4777 = (0.03925.

DC gain = = 254777.

9.4.4 First-Order High- Filter Desi
Similar to the low-pass filter design, the pole-zero placements for first-order high-pass

filters in two cases are shown in Figures (9.5a) and (9.5b).

y AR 3
f,/2 | a ; /2 | \ ;
) | x {;Qop- / § | ? D. /
|/ | | |/ Ly
f, /2 T 0 £, fl2
Fig.(9.5a) Pole-zero placement for the Fig.(9.5b) Pole-zero placement for the

first-order highpass filter with fc <fs/4. first-order highpass filter with fc >fs/4.

Formulas for designing highpass filters using the pole-zero placement are listed in the following

equations:
When f, < f;/4, a = 1 =2 < (f./f;) » 7, good for 0.9 < r < 1.

When f, > f;/4, a = —(l =7+ 2 =< (f./f;) x7), good for — 1 <r<—-09



(9.31)

Example (8): A first-order highpass filter is required to satisfy the following specifications:
Sampling rate = 8,000 Hz .1

A 3 dB cutoff frequency: fc = 3800 Hz .2

Zero gain at 0 Hz. .3

Find the transfer function using the pole-zero placement method.

Solution:

Since the cutoff frequency of 3,800 Hz is much larger than fs/ 4 = 2,000 Hz, we determine the

pole as:

a = —(1 —a+ 2 x(3800/8000) x 7) = —0.8429,

1 —0.8429
K = (—] = 0.07854

2

0.07854(z— 1) 0.07854 — 0.07854z""!
(z+0.8429) 1+ 0.8429z"!

Note that we can also determine the unit-gain scale factor K by substituting Z = ¢ 118 = -1 into the
transfer function H(Z) = (Z -1) / (Z - a), finding a passband gain at the Nyquist limit fs/2 = 4,000
Hz. We then set the scale factor to be a reciprocal of the passband gain. That is,

z—1 —1 -1

— — 12.7307.
- 08429 _, —1+ro0s8a9 7V

passhand gain =

Hence, K = 1/12.7307 = 0.07854.
9. 5 Application: Disital Audio Equali

For an audio application such as the CD player, the digital audio equalizer is used to

make the sound as one desires by changing filter gains for different audio frequency bands. Other
applications include adjusting the sound source to take room acoustics into account, removing
undesired noise, and boosting the desired signal in the specified pass-band. The simulation is
based on the consumer digital audio processor—such as a CD player—handling the 16-bit digital
samples with a sampling rate of 44.1 kHz and an audio signal bandwidth at 22.05 kHz. A block
diagram of the digital audio equalizer is depicted in Fig (9.6). z



A seven-band audio equalizer is adopted for discussion. The center frequencies are listed

in Table (2). The 3 dB bandwidth for each band-pass filter is chosen to be 50% of the center
frequency. As shown in Fig (9.6), go through g are the digital gains for each band-pass filter
output and can be adjusted to make sound effects, while yo(n) through ys(n) are the digital
amplified bandpass filter outputs. Finally, the equalized signal is the sum of the amplified
bandpass filter outputs and itself. By changing the digital gains of the equalizer, many sound
effects can be produced. A IIR bandpass Butterworth filters are chosen for the audio equalizer.

The coefficients are achieved using the BLT method.

Bandpass filtar

- T

I N
Bandpass filtar
> ™
xim _;_l\_
—

Bandpass filtar
Ir_'l

Fig. (9.6) Simplified block diagram of the audio equalizer.

Table (2) Specifications for an audio equalizer to be designed.

Center frequency (Hz) 100 200 400 1000 2500 G000 1 5000
Bandwidth (Hz) 50 100 200 500 1250 3000 7500

Filtar gain

10°% +
101 102 10% 104 10%

Frequency (Hz)

Fig. (9.7) Magnitude frequency responses for the audio equalizer.
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The audio test signal having frequency components of 100 Hz, 200 Hz, 400 Hz, 1,000
Hz, 2,500 Hz, 6,000 Hz, and 15,000 Hz.

The gains set for the filter banks are: go = 10; g1 =10; g2 =0; g3 =0; g4 =0; g5 = 10; ge=
10. The frequency components at 100 Hz, 200 Hz, 6,000 Hz, and 15,000 Hz will be boosted by
20 logio 10 =20 dB. The top plot in Fig. (9.8), shows the spectrum for the audio test signal, while
the bottom plot depicts the spectrum for the equalized audio test signal. Before audio digital
equalization, the spectral peaks at all bands are at the same level; after audio digital equalization,
the frequency components at bank 0, bank 1, bank 5, and bank 6 are amplified. The operation of

the digital equalizer boosts the low frequency components and the high frequency components.

Audio spectrum

100

102

i L L Liaa I L1
11 102 1% 104 105
Fraquency (Hz)

Fig. (9.8) Audio spectrum and equalized audio spectrum.
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1. Rectangular:

()= 1 0<n<N-1 9.45)
"k - { 0 otherwise )
2. Bartlett:
20 0<n<(N-1)/2
(N-1)
| 2-2n
= N-1)/2<n<(N-1 9.46
W (1) j(N—l) (N-1)/2<n<(N-1) (9.46)
[ 0 elsewhere
3. Hanning:
[|0.5 [1—cos ( 27 )1 O_HSN—IL
Wiy (1D (N-1) (9.47)
0 elsewhere J
4. Hamming:
( 2n 0<n<N- |
0.54 - 0.46 ==
= T v o)
0 elsewhere J
5. Blackman:
0<n<N- 1042-05cos (2% )+008cos (77
%(ﬂ)ﬁ (N-1) (N-1) ﬁ (9.49)
0 elsewhere

An ideal LP filter with linear phase of slope —a and cutoff wc can be characterized in frequency

domain by:
e ) wew
)=H (e ) 9.50
b e 0

Using inverse F.T (eq. (4.11), PP. 28 ):

sin[ w(n—a) ]

)= 9.51)

7 (n—a)
For a causal FIR filter, and using :
h(n)= h,(n). w(n) (9.52)
Substituting eq.(9.51) into eq.(9.52), yield:

[o IR



P P AT SCIN g (9.53)

r(n—-a)
For h(n) to be a linear phase filter, a = (N-1) / 2.
Table (3) shows hd(n) for LPF, HPF, BPF, and BSF:

Table (3) ha(n) and hg(a ) for LPF, HPFE, BPF, and BS

Filter Type ha(n) ha(a)
sin[ w,(n— «
LPF hd(ﬂ): L )] hg(a)=we/m
7 (n—a)
i -a
HPF h(n=- W= )] ha(at) = 1 — (we/ )
T (n—-a)
N, = 2wk , N, = 2wk
w - W W o—w
1 1 2 u
BPF N =max (N1, N2) hg(o) = (wu-wy)/m
iy = S (=) sin{w,(n-a)
m(n—o)
N = 2wk N = 2wk
Yw—w wo—w
1 / u 2
BSF N =max (N1, N2) hda(a) = (Tt —wu—wys)/n

) = L=} —sin w, (1=}
T(n—-a)

In general, for all the above filters with N odd:
()= hy(n). w(n)

o N=1
i He= S sl i) }
2 & I 2
O(W)=—Wa,witha=(N-1)/2
Notes:
The stop-band gain for the LPF designed is relatively insensitive to the size of the o
window and the selection of w¢ depending mainly on the type of window.

The transition width of the designed LPF is approximately equal to the main lobe of the
window used. See Table (4)
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Table (4) Design table for FIR LPF

Window Transition Width (wy) Minimum stop-band attenuation
Rectangular 4n/N —-21dB
Bartlett 8n/N —25dB
Hanning 8n/N —44 dB
Hamming 8n/N —-53dB
Blackman 127/N —74dB

Design procedure for an FIR filter .8
Requirements. k1, wi, ka, and wy represents the cutoff and stop-band requirements for digital

filters.
From Table (4), select the window type such that the stop-band gain exceeds k> .1
Selects the number of points in the window, 2
wi=w2—wiZ2k2n/N),
N is preferred odd N>kQ2mrn)/(w2—wi),
Select o and wc, where: .3
we=wi,anda=(N—1)/2
Find h(n) from eq. (9.52) using the specified window type and Table (3) . .4
Use eq. (9.42) or eq.(9.43 ) to plot the frequency response H(e!W), and check to see if the
given specifications are satisfied.
If the attenuation requirement at w1 is not satisfied, increase w and return to step 4, and 5 . .6
If the frequency response requirements are satisfied, check to see if a further reduction of .7

N might be possible. If a further reduction in N is not possible, then h(n) found is the

desired design, otherwise, reduce N and return to step 3.

If the filter is to be used in A/D- H(Z) — D/A structure, the equivalent analog specifications .8

must be converted to digital specifications. For analog critical frequencies, i, the

corresponding digital specifications using a sampling rate of 1 / T samples /sec. ;

wi=Q;iT

Example (9): Design a LP digital filter to be used in A/D- H(Z) — D/A structure that will have a

— 3 dB cutoff of 30 7 rad / sec. and an attenuation of 50 dB at 45 n rad/sec. The filter is required g

to have linear phase. The system will use a sampling rate of 100 samples/sec.

0



Solution:
we=wi1=QuT=30n(1/100) = 0.3 ® rad
w2=wr=Q; T=45m(1/100) = 0.45 nrad

Hamming window is chosen. .1
From step (2): .2
8n/N)=k(@2n/N), Thenk=4
N>4(2n)/(0.45-0.3) n=53.3=55
we=wy=03nrad,anda=(N—-1)/2=273.

4. Using eq. (9.48) for wHam and the value of h4q(n) from Table (3) to find h(n):

) =S LO3T=2T) ] 4654 0.46 cos(2771/54)},0< n< 54
m(n—-27)

H(e'™)=e/" {h(27)+ ) 2 Hn) {oos] WMn-27)1}

From the results obtained from MATLAB program, the attenuation is seen to be too much at we

= w1 . The design is improved by making wc = 0.33 rad / sec, then N =29 , a = 14 and

iy =S L0337 =1 | v 54 046 cos(277n/28)},0< n< 28
Z(n—-14)

He'™)=e/"4) {h (14)+B22 Hn) {ocs] WMn-14)] }
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